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Abstract

This paper describes two steps of a morpheme
boundary segmentation algorithm. The task is
solely to find boundaries between morphemes
bar any further analysis such as phoneme dele-
tions, insertions or alternations that may occur
between or within morphemes. The algorithm
presented here was designed under the premise
that it is not supposed to utilize any knowledge
about the language it should analyse. Neither
is it supposed to rely on any kind of human
supervision. The first step is to use a high-
precision, low-recall algorithm to find a rela-
tively small number of mostly correct segmen-
tations, see (Bordag, 2005). In the second step,
these segmentations are used to train a classifi-
cator, which is then applied to all words to find
morpheme boundaries within them.

1 Related Work

The first step of the algorithm presented in this paper is
a revised version of theletter successor variety(LSV)
based algorithm (Harris, 1955; Hafer and Weiss, 1974)
(see also (Feng et al., 2004) for an application of that
idea to word splitting in Chinese) described and imple-
mented previously by Bordag (2005). This part of the
algorithm makes use of contextual information such as
cooccurrences of words (the term ‘word’ will be used
synonymously to ‘word forms’ throughout this paper)
within sentences or next to each other. That makes
this algorithm comparable to but not identical with an-
other existing algorithm, which also takes a semantic
approach (Schone and Jurafsky, 2001).

As it became clear in (Bordag, 2005), the LSV algo-
rithm does not achieve sufficient levels of recall while
having a high precision score. Consequently, another
algorithm is necessary that can generalize the knowl-
edge produced by the LSV algorithm and apply it to
each word in order to increase recall while trying to
keep precision high. This second step of the algo-
rithm is based on an implementation of the PATRICIA
tree (Morrison, 1968) as a classificator (Witschel and
Biemann, 2005), although any other machine learning
method could be applied. It is a variant of the trie mem-
ory (Fredkin, 1960) that is especially well suited for

natural language tasks due to its low memory usage.
Each boundary found by the first step is used as a train-
ing instance for a PATRICIA tree based classificator.
The classificator then, applied to an unanalysed word,
marks the most probable prefix or suffix of that word.
Given a few simple constraints, the combination of the
two algorithms yields a slight precision drop, (proba-
bly due to overlearning) versus a strong recall increase
compared to the first LSV algorithm alone. Addition-
ally, the classificator is applied recursively to the found
affix and the remaining part of the word in order to find
morpheme boundaries even within very long words -
thus alleviating another problem of the LSV algorithm.

2 The algorithm in two steps

2.1 The First Step: Letter Successor Variety

The letter successor variety has been introduced as
word-splittingthatoccurs if the number of distinct let-
tersafter a given substring rises significantly or above
a certain threshold, given a list of words to compare
with (Harris, 1955). However, the exact set of words to
compare against when measuring the amount of var-
ious letters encountered after substrings remains un-
clear. Especially since there is evidence (Hafer and
Weiss, 1974) that the results can be quite noisy, if
simply the entire word list is used. In fact, using the
plain global LSV method (plain stands for not using
any weights introduced later on, global stands for com-
paring the morphology of any word against all other
words) with for example the cut-off strategy yields only
a maximal F-measure of41% on the word list used in
the experiments below (see Figure 1). Furthermore, it
is rather plausible that although for example the word
clearlyhas some similarity in letters (measurable by the
edit distance) to the word formearly, there is no doubt
that this similarity does not help at all to explain the
morphological structure ofclearly because both words
are unrelated otherwise. Thus, a method is needed that
can provide a list of words both similar by edit distance
and by contexts in which they appear - i.e. either se-
mantically or syntactically related.

One possibility to obtain semantically and/or syn-
tactically related words for a given input wordw,
is to compute sentence or neighbour cooccurrences
(Quasthoff and Wolff, 2002). For example, the word
clearly cooccurs withbeen, said, now, .... This infor-



mation in the form of a high-dimensional vector space
can be used to compute a list of (at most150 in this
work) similar words using any similarity measure such
as cosine or 2-norm. Finally, the most similar words
for a given input word, ranked both by edit distance
and contextual similarity, are used to compute an indi-
vidual LSV-score for each position within the word. In
the English corpus used, the list of most similar words
for clearly containsclosely, greatly, legally, linearly,
really, weakly, .... The final LSV-score is computed
for each position in the input wordw by mutliplying
theoriginal LSV-scorewith two normalization factors,
a weighted average of parts-frequenciesand thein-
verse bigram ranking weight.

The original LSV-score: The LSV-score for each
position between two letters of the input word is com-
puted directly by counting the number of different let-
ters that follow after or before a substring of the word.
Table 1 shows that before the substring-ly 4 differ-
ent letters were encountered within the150 most sim-
ilar words toearly. On the other hand, Table 2 shows
that forclearly16 different letters were seen before-ly.
Thus, according to the original LSV idea it is possible
to conclude that in the wordearly the syllable-ly is not
a suffix, whereas in the wordclearly it is.

The weighted average of substring frequency:
However, there are a few quirks with the plain LSV ap-
proach. One is that the frequency of the respective sub-
strings within the similarity list plays an important role:
For early only 6 words out of19 ending with-y ended
with -ly, compared to76 out of90 words forclearly. As
an improvement over the original LSV method this ra-
tio is used to obtain a confidence weight for how ‘trust-
worthy’ the computed LSV at that particular position
is. For ear-ly it would be 6/19 = 0.3 compared to
76/90 = 0.8 for clear-ly, further widening the differ-
ence between the two types of-ly.

Another quirk is that some phonemes are represented
by more than one letter such asth in English. This re-
sults in wrong splittings, because the frequency weight
denominator is ‘carried away’. But it can be safely
assumed that these letter combinations are of a much
higher frequency compared to other common combina-
tions of letters. The assumption is safe because single
letters have a higher frequency spectrum compared to
letter combinations. But if some letter combinations
are essentially single phonemes represented by several
letters, then they also belong to the higher frequency
spectrum of single letters. The corrected frequency
weight is computed as a weighted average of frequency
weights using a bi- and tri-gram weight computed glob-
ally over the entire wordlist. The weights are distrib-
uted uniformly along the continumm between0.0 and
1.0 according to their corresponding frequencies for
eachn of n-grams individually. Thus, the most fre-
quent bigram receives a weight of1.0 and the least fre-
quent bigram0.0.

For the wordthing, for example, there is a LSV-

value of4 for th-. The frequency ofth- in the150 most
similar words is12 as opposed tot- with 23. The bi-
gram weight of0.3 allows to down-weight the resulting
12/23 = 0.5 to (1.0 ∗ 12/23 + 0.3 ∗ 12/150)/(1.0 +
0.3) = 0.4. Since for example in German even three
letters can represent a single phoneme, the same can be
applied to 3-grams and in each case the larger n-gram
weight is chosen.

The inverse bigram weight: Taking the inverse bi-
gram weight of the position for which a score is com-
puted can help to weight down such positions that are
very improbable to represent a morpheme boundary. In
the example ofearly, the bigramrl is very rare, thus the
weight is0.0 and the inverse weight is1.0− 0.0 = 1.0.
This means that it is quite probable for a boundary to
be at that position.

The combination of LSV-score and weights:The
final score for each position is computed as the sum of
the scores for LSV from left and from right, multiplied
with the two weights, the corrected frequency weight
and the inverse bigram probability. The resulting score
for the exampleear-ly is the origibal LSV-score for that
position, 4, multiplied by the weighted average and
the inverse bigram ranking:4 ∗ (1.0 ∗ 12/23 + 0.3 ∗
12/150)/(1.0 + 0.3) ∗ (1.0− 0.0) = 1.2 as opposed to
clear-lywith 16 ∗ (1.0 ∗ 76/90 + 0.3 ∗ 76/150)/(1.0 +
0.3) ∗ (1.0 − 0.0) = 13.4, as can be seen in Tables 1
and 2.

It is possible to label an algorithm aslocal (contrary
to global LSV), if it is based on computing the LSV-
scores for each word using its similar words instead of
simply all words. As can be seen in Figure 1, when us-
ing the introduced weights the local variant reaches a
maximum peak at approximately the same64% as the
global variant. However, it has a much higher preci-
sion at that peak of71% compared to59% of the global
variant while having a much lower recall value of56%
compared to70% of the global variant.

For any of the proposed methods using an arbitrar-
ily chosen threshold such as5, it is possible to decide,
whether a given score is a morpheme boundary, or not.
This threshold should theoretically depend only on the
number of different letters in a given language. It may
be a mere coincidence, but as can be seen from Figure
1, the optimum choice of the treshold seems to roughly
correspond to the natural logarithm of the number of
possible letters except for the case of the plain global
LSV-algorithm. However, the lack of cooccurrence ob-
servations if the corpus is not large enough, can ef-
fectively prevent the discovery of a valid morpheme
boundary with an otherwise correctly set threshold.

In fact, the size of the corpus is a rather essential
problem for this algorithm. From Zipfs law (Zipf,
1949) follows that in any corpus most words will have
a frequency of less thenx for some lowx such as10,
for example. But if a given word occurs only a dozen of
times, then only a few words will be significant neigh-
bour cooccurrences and almost no words can be com-



input word: # e a r l y #
LSV left: 40 5 1 1 2 1
LSV right: 1 2 1 4 6 19
freq. left: 150 9 2 2 2 1
freq. right: 1 2 2 6 19 150
bigram left: 0.2 0.2 0.5 0.0
trigram left: 0.0 0.1 0.0
bigram right: 0.5 0.0 0.1 0.3
trigram right: 0.0 0.0 0.2
bigram weight: 0.2 0.5 0.0 0.1
score left: 0.0 0.0 0.5 1.7
score right: 1.0 0.0 0.7 0.2
final score : 1.0 0.1 1.2 2.0

Table 1: Sample computation of the local LSV algorithm forearly. Weights were rounded and the given scores
and weights refer to the position to the left of the respective letter.

input word: # c l e a r l y #
LSV left: 28 5 3 1 1 1 1 1
LSV right: 1 1 2 1 3 16 10 14
freq. left: 150 11 4 1 1 1 1 1
freq. right: 1 1 2 2 5 76 90 150
bigram left: 0.4 0.1 0.5 0.2 0.5 0.0
trigram left: 0.1 0.1 0.1 0.1 0.0
bigram right: 0.5 0.2 0.5 0.0 0.1 0.3
trigram right: 0.1 0.1 0.0 0.0 0.2
bigram weight: 0.1 0.5 0.2 0.5 0.0 0.1
score left: 0.1 0.3 0.0 0.4 1.0 0.9
score right: 0.3 0.9 0.1 0.0 12.4 3.7
final score : 0.4 1.2 0.1 0.4 13.4 4.6

Table 2: Sample computation of the local LSV algorithm forclearly. Weights were rounded and the given scores
and weights refer to the position to the left of the respective letter.

puted as similar to the input word. Thus, in a small
corpus even common words might be represented in-
sufficiently for this algorithm. Furthermore, for lan-
guages such as Finnish this problem is intensified - due
to the large amount of various word forms, each one
occurs substantially less frequently in a similar sized
corpus and thus it is less probable to obtain a sensible
set of semantically similar words for any given input
word unless the corpus size is significantly increased.

2.2 The Second Step: A Generalisation using a
Trie-Based Classificator

One possibility to circumvent the representativity prob-
lems of the local LSV-based algorithm is to use its re-
sult in an attempt to generalize them by other means.
For this it is feasible to use affix trees such as a trie
(Fredkin, 1960) or a PATRICIA compact tree (PCT)
(Morrison, 1968). Variations of this data structure have
already been widely used for many applications and
also for classifications of word strings and their affixes
(Cucerzan and Yarowsky, 2003; Sjoeberg and Kann,
2004). The particular implementation used here is the
same as in (Witschel and Biemann, 2005).

A PCT can be trained to classify affixes in the fol-
lowing manner: An input consists of the string to be
classified, i.e.clearly, and the classification class, such
asly or 2. This either means that the suffix-ly has to be
cut, or more simply that the boundary is the second po-
sition from the right side of the word. However, the lat-
ter variant is more susceptible for overlearning, thus the
whole substrings instead of just substring lengths were
used as classes. From the examples used in the previ-
ous section one valid training instance can be acquired:
clearly ly. The corresponding reversed uncompressed
tree structure would have one node,y with one possi-
ble decisionly=1 (with the frequency of1). This node
would have a child nodel with the same information.

In order to use such a tree for classification, first the
deepest possible node in the tree structure has to be re-
trieved. For the exampledaily it would be the second
nodel, because the next child node is a mismatch be-
tween i of daily anda stored in the tree. The proba-
bility for any class of the found node is the frequency
of that class divided by the sum of all frequencies of
all classes of that node. A threshold (in the experi-
ments conducted here it was set to0.51) can be used to



discern too unclear decisions from clear cases and ef-
fectively prevent too much overlearning. In the exam-
ple daily, the probability is1.0 since there are no other
classes stored in the found node. It is noteworthy that
such classificator trees have strong generalization abil-
ities while retaining all exceptions. Such a suffix tree,
trained on three itemsclearly ly, strongly lyandearly
NULL is able to correctly annotate hundreds of words
ending with-ly while remembering the single excep-
tion of early. However, it will only be able to produce
this single exception, so overlearning is still possible.
Pruning, a common technique to cut seemingly redun-
dant branches of the trie for higher efficiency, has not
been used here.

For the current special case of affix classification it
is important to decide whether the class to be trained
is a prefix or a suffix. This is because it does not help
much to know that a word begins withmo in order to
guess whether its trailings is a suffix or not. Therefore,
a simple strategy is used to train two distinct classifi-
cators: Given an input string withn boundaries, the
outermost is selected recursively as a class and cut off
for the next training item. If it is more to the right side,
then the suffix classificator is trained with that and oth-
erwise the prefix classificator is trained. For example
the worddis-similar-ly results in the one training item
for the suffix classificatordissimilarly ly, and one for
the prefix classificatordis similar.

After training both classificators in the described
way, they can be used as a morpheme boundary detec-
tion algorithm. For any input word both classificators
are used to retrieve their most probable classification.
In rare cases this can produce unfitting classifications,
such as-ly for the input wordMay. This can happen
if the lowest common node isy and the strongest class
at that node isly - such cases are discarded. Then the
longer of the two classes (from forward or backward
classificator) is taken and a morpheme boundary is in-
troduced according to that classification. Thus, for the
exampleundertakenthe affix under- will be favored
over the affix-en. A length threshold of3 is used to de-
termine a valid classification, which means that either
the new affix or the remaining word must be longer or
equal in length to this threshold in order to avoid degen-
erated analyses such ass-t-i-l-l. After that, this classi-
fication algorithm is recursively applied to both parts
again. This results in long words such ashydro-chem-
ist-ry to be analysed completely, where the initial local
LSV-based algorithm failed altogether.

3 Quality assessment

A first assessment of the quality of the results can be
made by utilizing information available from CELEX
(Baayen et al., 1995). However, without any modifi-
cations such as introduced to the gold-standard of the
MorphoChallenge 2005, analyses such aslur-ed will
be marked as wrong using this method.

The languages used for this evaluation were Ger-

man and English. The corpora used were available
from the ’Projekt Deutscher Wortschatz’ (Quasthoff,
1998). The German corpus contains about 24 million
sentences and the English corpus contained 13 million
sentences. For the MorphoChallenge 2005 additionally
two smaller corpora of 4 million Finnish sentences and
1 million Turkish sentences were used.

Analogically to the evaluation of the MorphoChal-
lenge 2005, in this evaluation the overlap between the
manually tagged morpheme boundaries in CELEX and
the computed ones is measured. Precision is the num-
ber of found correct boundaries divided by the total
number of found boundaries. Recall is the number of
found correct boundaries divided by the total number
of boundaries present in the gold standard, restricted to
the words that were in the corresponding corpus.

There are two categories to be measured: the perfor-
mance of the first part of the algorithm, labeledLSV
(local LSV in Figure 1) in the tables, and both algo-
rithms combined, labeledcombined (local LSV+trie
in Figure 1). Precision, Recall and the F-measure for
the threshold5 are depicted in Table 3. Additionally
Figure 1 shows the performance of the plain global
LSV algorithm as well as the global LSV with the in-
troduced weights.

Several observations can be pointed out. The algo-
rithms perform better on the German data than on Eng-
lish. This might be explained by the small size of the
English corpus. But another explanation is more plau-
sible: English is morphologically poorer than German.
Thus a systematic error either by the algorithm or in the
evaluation data would have severe effects on the mea-
sured performance. One such systematic mistake is the
analysis of the-edaffix which in cases such aslur-ed is
marked as wrong. In a manual error analysis this single
error amounts to almost50% of all reported mistakes
for theLSV part, followed by other supposedly wrong
cases such asplopp-edor arrang-e-s. The prelimi-
nary results available from the MorphoChallenge 2005
indicate that these considerations were at least partly
true since the results reported there had an F-value of
61.7%. The remaining11% difference to the German
results can be more easily explained by the differences
in corpus sizes as well as random variation.

German English
LSV Precision 80,20 70,35
LSV Recall 34,52 10,86
LSV F-measure 48,27 18,82
combined Precision 68,77 52,87
combined Recall 72,11 52,56
combined F-measure 70,40 55,09

Table 3: Precision and recall of morpheme bound-
ary detection for both the LSV-based algorithm only
and the combination with the PATRICIA tree classifier,
based on an unmodified CELEX.

Another interesting point is that for the combined al-



gorithm in both languages there is a medium Precision
drop, traded for a large Recall gain: about38% Recall
for German, compared to a loss of12% in Precision.
Thus, the intended effect of increasing Recall without
hampering Precision too much by using the tree classi-
fiers has been partly achieved. Nevertheless the result-
ing precision of69% for German and merely53% for
English seem to be inhibitively low, albeit the effects of
false negatives as reported above are not yet quantified.

It is further interesting that when attempting to let
the trie-based classifier learn from the global LSV al-
gorithm the results were almost exactly the same. This
indicates that treating each word in its own context and
then letting a global algorithm (the trie-based classi-
ficator) learn from that indeed improves performance.
At the same time, using two global algorithms (global
LSV and then the trie) and letting the one learn from
the results of the other cannot help because in fact they
at best will do the same.

The corpora available to the author for the Finnish
and Turkish entries to the MorphoChallenge 2005 are
small - an order of magnitude smaller than for German
and English. Additionally both languages have almost
an order of magnitude more different word forms for
the same amount of text when compared to English.
Based on these considerations, the LSV threshold was
lowered to2.5 in both cases whereas it was kept at5 for
German and English as reported in (Bordag, 2005) to
be a good guess for high precision. Nevertheless, the
preliminary results from the MorphoChallenge 2005
indicate that especially for Finnish the corpus size was
simply insufficient.

Figure 1: Comparison of global LSV vs. local LSV
and after application of the trie-based classificator for
a variety of thresholds. Baseline is plain global LSV
without normalisations.

3.1 Conclusions

The described experiments show that the combination
of one algorithm learning from another is a viable way
to increase overall performance, although the results
are still far from perfect. Additionally it seems that any
single algorithm might work well only for certain (mor-
phological) types of languages and worse for other lan-
guages. For example, the local LSV algorithm works

quite well for the more flective German but worse for
the isolative English and even worse for agglutinative
languages such as Finnish or Turkish (at least when it
comes to Recall). Other algorithms (Creutz and Lagus,
2005) seem to be inherently better suited for these lan-
guages, but might perform worse for e.g. German. One
of the main reasons might be the treatment of irregu-
lar words: they are usually rather few, but have a high
frequency. At the same time their formation is irreg-
ular with respect to the majority of other words. That
means that comparing them to all other words tends to
result in wrong analyses, whereas comparing them to
their most similar words should have a greater chance
to capture their irregularity because even irregularities
tend to be regular in the correct context.

Since most algorithms can provide a confidence
score to each decision they make it would be interest-
ing to combine them into a voting system, effectively
improving results and broadening the applicability to a
wider range of languages.
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