
A Simpler, Intuitive Approach to Morpheme Induction

Samarth Keshava
Yale University

New Haven, CT 06520
samarth.keshava@yale.edu

Emily Pitler
Yale University

New Haven, CT 06520
emily.pitler@yale.edu

Abstract

We present a simple, psychologically
plausible algorithm to perform unsuper-
vised learning of morphemes. The algo-
rithm is most suited to Indo-European lan-
guages with a concatenative morphology,
and in particular English. We will describe
the two approaches that work together to
detect morphemes: 1) finding words that
appear as substrings of other words, and
2) detecting changes in transitional proba-
bilities. This algorithm yields particularly
good results given its simplicity and con-
ciseness: evaluated on a set of 532 human-
segmented English words, the 252-line
program achieved an F-score of 80.92%
(Precision: 82.84% Recall: 79.10%).

1 Introduction

This paper addresses the problem of segment-
ing natural language words into morphemes, the
smallest units of language that still contain mean-
ing. While one cannot extract meanings from lists
of words and their frequencies, we can neverthe-
less use statistical information to make useful pre-
dictions about likely morphemes.

There is a large body of literature on mor-
pheme induction, and while it is impossible to give
a complete survey, see (Goldsmith, 2001) for a
good summary of previous approaches. Goldsmith
divides these past attempts into four categories:
identification of morpheme boundaries using tran-
sitional probabilities; identification of morpheme-
internal bigrams or trigrams; discovery of relation-
ships between pairs of words; and an information-
theoretic approach to minimize the number of let-
ters in the morphemes of the language. Our work

combines ideas from several of these approaches
and does not fit neatly into any one of the cate-
gories.

The key idea in this paper is to use words that
appear as substrings of other words and transi-
tional probabilities together to detect morpheme
boundaries. The first approach derives from the
observation that the stem left over after removing
prefixes and suffixes is often a legitimate word.
Though, due to spelling changes, this is not always
the case and therefore this method should not be
used to actually segment a word. Given a large
enough corpus, however, the most common mor-
phemes can be found in this way. The other idea,
using transitional probabilities, was initially pre-
sented by (Harris, 1955). Given an utterance, Har-
ris proposed finding how many other utterances in
the corpus shared each starting fragment of that
utterance. He hypothesized that peaks in these
counts correspond to morpheme boundaries.

(Hafer and Weiss, 1974) further developed the
ideas presented in Harris’s paper. Using Har-
ris’s transitional probability technique as a start-
ing point, Hafer and Weiss created 15 different
algorithms that achieved various levels of preci-
sion and recall. One issue with their approach is
its heavy reliance on empirically determined para-
meters. For example, their best algorithm (with a
precision of 91.0% and a recall of 61.0%) posited
a morpheme boundary if the suffix is a word and
the predecessor count is at least 5, or if the prede-
cessor count is at least 17 and the successor count
is at least 2.

Our goal was to design a simple algorithm based
on our intuition that simpler algorithms are more
likely to approximate human processes. We con-
sciously limited both the number of language-
specific assumptions that our program makes and

“magic numbers”—parameters arbitrarily tuned to
make the program work. We did not limit the
length of morphemes, the number of morphemes
per word, or the total number of morphemes.

2 Methodology

Our algorithm has four basic steps. We

1. build trees with probabilities based on the
corpus,

2. score word fragments using these trees to ob-
tain a large list of morphemes,

3. prune this list of morphemes, and

4. segment the test words using the morpheme
list and the lexicographic trees.

Each of these steps is described in further detail
below.

2.1 Building the Lexicographic Trees

At the beginning of the algorithm, we create two
trees of letters and their associated counts: the
“forward tree” and “backward tree”. We explain
here the construction of the “forward tree” (the
other construction is symmetric). Suppose the
alphabet of the language has b letters, and the
longest word in the corpus consists of d letters.
Then conceptually, we construct a complete b-way
tree with depth d. At each node, each of the b
branches represents one of the letters in the lan-
guage. Thus, any path from the root to some node
spells out the starting fragment of some word(s),
and the node itself contains the frequency of that
string. (Note that in practice, actually creating
such a tree would be prohibitive as well as waste-
ful since most letter combinations never occur;
thus we actually only store nodes with non-zero
counts.)

The forward and backward trees allow us to cal-
culate conditional probabilities in O(1) time given
a starting or ending substring of a word. For ex-
ample, we would use the forward tree to calculate
Prf (s|report) (by dividing the frequency of words
starting with “reports” by the frequency of words
starting with “report”). In the opposite direc-
tion, we would use the backward tree to calculate
Prb(e|ports) (by dividing the frequency of words
ending in “eports” by the frequency of words end-
ing in “ports”).

2.2 Scoring Potential Morphemes
Once we have finished constructing the trees as de-
scribed above, we begin finding morphemes. We
maintain two lists of morphemes: a prefix list and
a suffix list.1 To populate the suffix list, for each
word, we scan from the end of the word and con-
sider every possible suffix in order of increasing
length. Suppose we are considering the suffix Bβ
in the word αABβ. We hypothesize the proposed
suffix is correct if

1. αA is also a word in the corpus,

2. Prf (A|α) ≈ 1, and

3. Prf (B|αA) < 1.

Similarly, the criteria for determining if αA is a
prefix in the word αABβ is as follows

1. Bβ is also a word in the corpus,

2. Prb(B|β) ≈ 1, and

3. Prb(A|Bβ) < 1.

The first criterion corresponds to the observa-
tion that prefixes and suffixes are often added on to
root words. For example, after removing the suffix
“ed” from “corresponded”, the resulting fragment
“correspond” is still a word. The second and third
criteria are checked using the forward and back-
ward trees. They check that the stem has multiple
children (thus implying other prefixes or suffixes
can be joined to the stem) and that the stem’s par-
ent has only one child (thus identifying it as a true
stem). Using the same example as before, the al-
gorithm would check that Prf (d|correspon) ≈ 1,
and that Prf (e|correspond) < 1. If a given mor-
pheme passes all three tests, we increase its score
by 19 points; otherwise, we decrease its score by
1. After we have iterated through the entire cor-
pus, we consider all strings with positive scores
morphemes.

The rule of rewarding word fragments by 19 and
punishing by 1 may seem arbitrary, but the con-
stants were chosen so that a string has a positive fi-
nal score only if it passes our tests at least five per-
cent (= 1

1+19) of the times it appears. Moreover,
the numbers 19 and 1 are not special; any posi-
tive numbers x and y such that y

x+y = .05 would

1We use the terms prefix and suffix loosely, to denote any
morpheme generally found at the beginning or end of words.
For example, “man” is not technically a suffix, but it is a mor-
pheme that often appears at the end of a word.

produce identical results.2 The rewarding and
punishing scheme is more effective than check-
ing the percentage of tests passed because given
two morphemes with the same percentage, the
more common morpheme will have a higher score.
Thus, the punishing/rewarding scheme takes into
account both the reliability and the frequency of
the string appearing as a morpheme. Single letters
such as ‘t’, which sometimes deceivingly appear to
be prefixes, are punished far more often than they
are rewarded. Strings such as ‘psycho’, which do
not appear often but are almost always true mor-
phemes when they do appear, are rewarded more
often than they are punished. Suffixes like ‘s’
are punished occasionally but rewarded very fre-
quently, and are ranked at the top of the list.

2.3 Pruning

Clearly, this method is not perfect. In particular,
one problem that often arises is that the final list
of morphemes includes strings that are the con-
catenation of two other morphemes. For exam-
ple, the list might include all of ‘er’, ‘s’, and ‘ers’.
This is undesirable since the final step of segment-
ing words may process the word “throwers” as
throw+ers instead of as throw+er+s. Fortunately,
though, this problem has a relatively simple solu-
tion which we refer to as “pruning”. We scan each
list of morphemes, and if any morpheme is com-
posed of two others with better scores, then it is
thrown out.

2.4 Segmenting Words

Finally, we come to the actual segmenting of
words. Given the list of morphemes, one possi-
ble approach is to simply peel morphemes off the
ends of words as they are found. But words such
as “politeness” pose a problem: should it be seg-
mented as politenes+s or as polite+ness? Neither
the scores nor the lengths of morphemes can be re-
liably used to answer this question. In this case, ‘s’
would have a higher score, while ‘ness’ is a longer
morpheme. They key observation is that the same
probability criteria that was used earlier to detect
morphemes can be applied here to measure the ap-
propriateness of segmenting at a particular posi-

2Suppose that we rewarded and punished by x > 0 and
y > 0 respectively, satisfying y/(x + y) = 0.05. Then
y = 0.05 (x + y) ⇒ 0.05x = 0.95y ⇒ x = 19y. Thus,
if a string is rewarded r times and punished p times, it would
have a score of xr−yp = 19yr−yp = y(19r−p), which is
exactly y times our score. In particular, a string has a positive
score if and only if it had a positive score in our algorithm.

Table 1: Evaluation results of RePortS
Language Precision Recall F-Score
English 82.84 % 79.10 % 80.92 %

tion. In this example, we expect Prf (n|polite) to
be lower than Prf (s|politenes) which leads to the
correct segmentation.

Thus, our method for segmenting is as follows.
First, we scan each word from the end, and find all
morphemes Bβ from the suffix list such that our
word can be written as αBβ (for some α). The
morpheme with the lowest value of Prf (B|α) that
is also smaller than 1 is chosen. If such a mor-
pheme is found, it is removed and the processed
is repeated until no more morphemes can be re-
moved. We then repeat the same process, attempt-
ing to peel off morphemes in the prefix list from
the beginning of the word (using Prb instead of
Prf).

3 Results

The algorithm described above was implemented
as a Perl program called RePortS3. The English
frequency-word list provided by the Neural Net-
works Research Centre at the Helsinki Univer-
sity of Technology was combined with a year’s
worth of articles from the Wall Street Journal and
a Linux dictionary file to obtain a corpus contain-
ing 185,696 words for training. To determine the
performance of the algorithm, we ran our program
on a “gold standard” of 532 words (again, pro-
vided by the Neural Networks Research Centre)
and evaluated our proposed segmentation against
the human-determined standard (see Table 1).

Our program identified a total of 1795 mor-
phemes (808 in the prefix list and 987 in the suffix
list). Table 2 contains the ten highest-scoring mor-
phemes from each list.

The program was tested on a dual 2.8 GHz
processor with 2 GB of memory. We monitored
the total running time, i.e. training and segmen-
tation time, and the maximum memory usage of
RePortS. They are reported in Table 3 for test data
of different sizes (note that the same training cor-
pus was used in both cases).

While our algorithm was designed with English
and other Indo-European languages in mind, we

3The earliest versions of the algorithm determined that the
most common prefix, stem and suffix are ‘re’, ‘port’ and ‘s’,
respectively; hence, the name RePortS.

Table 2: Top English morphemes

Morpheme Score Morpheme Score
un 15858 s 24351
re 5312 ly 18847
dis 3783 ness 10430
non 2998 ing 8740
over 2717 ed 5669
mis 1812 al 2655
in 1689 ism 2169

sub 1632 less 1940
pre 1418 ist 1669

inter 1189 able 1613

Table 3: Resource usage for different test data

Words Time Space
532 0m 27sec ∼ 139 MB

167,377 34m 37sec ∼ 139 MB

decided to test our program with other languages
as well. We used test data for Turkish and Finnish
provided by the Neural Networks Research Cen-
tre. Our results for these two languages are given
in Table 4.

4 Discussion

As mentioned earlier, our algorithm performs well
given its conciseness and simplicity: the Perl im-
plementation was a total of 252 lines including
comments and the algorithm itself can be fully de-
scribed in four basic steps. Examples of words
that our program segments correctly include “re-
payments” and “passionflowers”. The former con-
tains several affixes and RePortS correctly sug-
gests re+pay+ment+s as the segmentation. The
latter, on the other hand, is an uncommon com-
pound word segmented as passion+flower+s.

However, the algorithm is obviously not flaw-
less. Consider a word such as “widen” (with a
correct segmentation of wid+en). The letters ‘en’
often appear at the end of a word but not as a suffix
(e.g. even, ten, hen, etc.) Thus, the potential mor-
pheme ‘en’ is punished far more frequently than
it is rewarded, and does not appear in the final
list of morphemes. This omission causes us to in-
correctly segment words such as “widen” (which
our program leaves untouched). However, on the
whole, our program performs better with the ex-
clusion of ‘en’.

Table 4: Evaluation results of RePortS
Language Precision Recall F-Score
Turkish 72.68 % 43.01 % 54.04 %
Finnish 83.76 % 32.30 % 46.62 %

Furthermore, there is some evidence that our al-
gorithm is psychologically plausible. As shown in
(Saffran et al., 1996a) and (Saffran et al., 1996b),
adults as well as infants are able to identify words
from continuous speech where the only avail-
able cues are transitional probabilities between
phonemes. These results show that it is possible
for humans to keep track of transitional probabili-
ties and use it in segmentation tasks. However, as
(Yang, 2004) points out, transitional probabilities
by themselves are not sufficient for larger corpora,
and indeed, our algorithm depends on other infor-
mation as well.

5 Future Work

One notable feature of RePortS is that it uses only
a list of words and their frequencies. Clearly, con-
textual information is lost when English text is col-
lapsed into such a list. We feel that the perfor-
mance could only be improved by extending our
algorithm to take advantage of such information.
Along the same lines, the inclusion of phonologi-
cal information may also improve the performane
of our algorithm. (Saffran et al., 1996b) showed
that humans learned better when presented with
both transitional probabilities and prosidic cues
than with transitional probabilities alone. Thus,
this too is an avenue for improvement.

On a slightly different note, another possibility
for further research would be to modify our pro-
gram to even more closely mirror human learning.
More specifically, humans generally do not per-
form “batch learning”. Therefore, instead of feed-
ing hundreds of thousands of words to the program
at once, we could supply the words in smaller
chunks, and in the order in which infants would
likely hear them. It would be interesting to com-
pare our current results to those from this process.

6 Conclusion

We described an efficient algorithm that uses sta-
tistical relationships within and between words
to predict morpheme boundaries. Humans are
also sensitive to such patterns in natural language.

Moreover, our heuristics make intuitive sense.
While we do not claim that humans use our al-
gorithm to segment words, we believe that further
research along this line has potential to reveal in-
sight into human language processing.

The program RePortS performs quite well
against a human-segmented gold standard for Eng-
lish; its precision and recall were both approxi-
mately 80%, with an F-Score of 80.92%. More-
over, even though the algorithm was designed
for Indo-European languages with a concatena-
tive morphology, it achieved surprisingly decent
results for Finnish and Turkish. We experimented
with other variants that achieved higher F-Scores,
but the algorithm presented here achieved the best
balance between performance and elegance.

7 Acknowledgements

We thank Charles Yang for his support throughout
the project. It was only through his encouragement
and support that we expanded our class project
into this work. We would also like to thank Bob
Berwick for pointing out the relevance of (Hafer
and Weiss, 1974) to our work.

References
John Goldsmith. 2001. Unsupervised Learning of the

Morphology of a Natural Language. Computational
Linguistics, 27(2):153–198.

Margaret A. Hafer and Stephen F. Weiss. 1974. Word
Segmentation by Letter Successor Varities. Infor-
mation Storage and Retrieval, 10:371–385.

Z. Harris. 1955. From Phoneme to Morpheme. Lan-
guage, 31(2):190–222.

Jenny R. Saffran, Richard N. Aslin, and Elissa L. New-
port. 1996a. Stastical Learning by 8-Month-Old In-
fants. Science, 274(5294):1926–1928.

Jenny R. Saffran, Elissa L. Newport, and Richard N.
Aslin. 1996b. Word Segmentation: The Role of
Distributional Cues. Journal of Memory and Lan-
guage, 35(4):606–621.

Charles D. Yang. 2004. Universal Grammar, sta-
tistics or both? TRENDS in Cognitive Sciences,
8(10):451–456.

