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Abstract 

We develop a morphological learner that 
evaluates evidence supporting specific 
claims that a string of letters is a distribu-
tional meaningful unit. The distributional 
evidence is evaluated by selectional 
properties of morphs, while evidence 
towards meaning is modelled by looking 
at the relationship between stems and 
words. To assess a proposed affix, it gets 
a probability measure of meaning by 
comparing all the possible stems the affix 
occur with to the particular subset that 
also occur as words. Since for a stem to 
be a word counts as evidence towards its 
meaning, the ratio formed by taking 
stems that are words to the whole set of 
possible stems for an affix gives a predic-
tive probability measure for the affix that 
measures the chance that it has combined 
with a meaningful stem. This measure, 
taken in conjunction with the selectional 
statistics of stems and affixes, provides a 
basis for deciding on the best morpho-
logical structure for a given word. The 
results for English show a combined pre-
cision and recall of 45.  

1 Introduction 

A lexicon for a language will contain, among a 
lot of facts about the language, a list of words, 
the morphemes and rules for how to combine 
different morphemes like stems and affixes into 
words. It is assumed that the rules are those of 
concatenative morphology. Given a lexicon with 
the above properties, the following statement 1 

                                                 
1 Standard notation from predicate logic is used.  

captures the conditions on a word w that consists 
of a stem x plus suffix y. 
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morph w x y

stem x suff y sel x y∧ ∧
�  (1.1) 

The binary predicate sel encodes the selectional 
restriction between x and y. Joining two morphs 
together may not result in a well formed word, 
and sel encodes the pairs that can be combined 
together.  

Depending on the language, there will be a 
couple of rules like those in equation (1.1): one 
for prefix plus stem, stem plus suffix, stem plus 
infix, and stem plus stem. For the purpose of the 
morphochallenge task, here restricted to English, 
we do not consider infixes, nor reduplicative 
morphology or suprasegmental morphology. 

The definition in equation (1.1) splits a word 
only one time. In order to get a list of morphs 
from this definition it has to be applied recur-
sively. A predicate morphs serves this purpose, 
and can be defined as follows2, relating a word 
form w to the list of morphs constituting w, in 
this case a ‘+’ separated list: 

 

( , )

( , , )

( , )

morphs w morphlist

morph w stm suff

morphs stm stemlist

morphlist stemlist suff

∧

∧
= +

�

 (1.2) 

Our point of departure is that the characteriza-
tion of morphological analysis is the same 

                                                 
2 The defining expression translates into the Prolog 
programming language. 



whether the lexicon is given or not. The differ-
ence between a learner of a lexicon and a knowl-
edgeable performer is viewed as a difference in 
the level of confidence.  

The problem of learning a lexicon from a 
word list is, according to this view, taken to be 
the problem of estimating the truth of the terms 
in equation (1.1). The truth is assessed via prob-
ability measures over a set of hypotheses. A sim-
plifying assumption is that each word has a 
unique split into stem and affix. 

Following (Goldsmith, 2001) the number of 
hypothesized suffixes considered for an English 
word w is limited to six including null morphs. 
The set of suffix hypotheses for a word like 
drinking is then  

 

{
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( , , )
( , , )
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( , , )
( , , )

}

H

morph drinking drinking Ø

morph drinking drinkin g

morph drinking drinki ng

morph drinking drink ing

morph drinking drin king

morph drinking dri nking

=

 (1.3) 

The present approach explores ways for calcu-
lating the morphological structure using only the 
distributional properties of stems and suffixes 
considered as atoms. Their internal letter struc-
ture is not taken into account, but see e.g. 
(Goldsmith, 2001; Creutz & Lagus, 2005) for 
how one may go about using that kind of infor-
mation. The information contained in the inher-
ent substring ordering of the morphs is not util-
ized either.  

2 The probability formulation 

Equation (1.1) contains the logical statement of 
the relationship between a stem and an affix con-
ditioned on the facts in the lexicon.  This is con-
verted into a probability equation conditioned on 
the wordlist W considered as a set of propositions 
of what counts as a word.  

 
( ( , , ) | )

( ( ), ( ), ( , ) | )
p morph w x y W

p stem x suff y sel x y W

=
 (1.4) 

The right hand side can be expanded to a 
product of the terms in (1.5) and (1.6) below. 

 ( ( ), ( ) | ( , ), )p stem x suff y sel x y W  (1.5) 

and 

 ( ( , ) | )p sel x y W  (1.6) 

When replacing the lexicon with the wordlist W 
as the conditioning facts in these equations, a 
couple of assumptions have to be revised. The 
use of sel as a conditioning term in equation (1.5) 
is assumed to be superfluous. The predicate sel is 
for a learner reinterpreted as continuous measure 
of selectional information, and as such really is a 
ternary predicate, relating two possible morphs 
to their selectional information. By doing this, 
sel contributes to the overall value solely through 
equation (1.6).  

This independence assumption turns (1.5) into 
(1.7) below 

 ( ( ), ( ) | )p stem x suff y W  (1.7) 

The probability formulation then leaves us to 
compute the equations (1.6) and (1.7).  

We will make one change to the objects in the 
equations. Instead of working with the morph 
tokens themselves, they are replaced with their 
respective distributions, indicated using a * on 
the morph variable. 

A stem x corresponds then to the class of pos-
sible suffixes it combines with. In the following 
equations a dot “.” is used to indicate concatena-
tion. 

 * { | . }x x z x z W= ∈�  (1.8) 

A suffix y corresponds to the class of stems it 
combines with 

 * { | . }y y z z y W= ∈�  (1.9) 

2.1 Selection 

The selectional properties are computed by com-
paring W with the possible combinations from 
w=x.y of stems from y* and suffixes from x*, 
denoted y*.x*.  This object is closely related to 
the paradigm in (Snover & Brent, 2002) and the 
signatures in (Goldsmith, 2001).  

The conditional probability of the two sets 
y*.x* and W is interpreted in a standard way as 
being the proportion of successes of their inter-
section, which is computed as the ratio of good 
words from y*.x* to all words in y*.x*.  

 
| *. * |

( ( , ) | )
| *. * |

y x W
p sel x y W

y x
∩=  (1.10)  

The implementation used in the morphochal-
lenge uses a beta(a,b) density for calculating this 
equation. The first argument, a, of this distribu-
tion is filled with the positive cases, the numera-



tor of (1.10), and the second argument, b, con-
sists of the number of negative cases, the differ-
ence between denominator and numerator. The 
probability assigned to the selectional property is 
calculated from this density by taking its mean 
and subtracting one standard deviation. Subtract-
ing one standard deviation gives a more conser-
vative predictive probability than the taken from 
(1.10) directly, and will penalize those combina-
tions that contain few examples. 

For some stems and affixes, the total number 
of possible words got rather large, and so for the 
challenge, there was some experimentation with 
reducing the parameters for the beta density. Best 
results for both precision and recall was achieved 
by shrinking the parameters a and b by the 6th 
root. 

Future improvements for the computation of 
sel, rest on a Bayesian inversion of the formula 
(1.10), which can be used in updating a distribu-
tion d over stems and suffixes via maximum like-
lihood. A particular d is a distribution over the 
hypotheses for a word as shown in (1.3).  

The following equation lets d play a role in the 
computation of sel as well, and allows us to take 
into account various confidence levels as ex-
pressed by d in particular analyses.  

 

( | ( , ), )
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( ( , ) | )

p d sel x y W

p sel x y W d p d W
p sel x y W

=
⋅=

 (1.11) 

The denominator and normalizing constant of the 
right hand side of this equation corresponds to 
the left side of (1.10) and can by using (1.11) be 
computed by summing over the relevant distribu-
tions d  

 
( ( , ) | )

( ( , ) | , ) ( | )
d

p sel x y W

p sel x y W d p d W

=
=�

 

2.2 Stem and affix 

There is no source of meaning for stems and af-
fixes from the word list W beyond the assump-
tion that any word itself has a meaning. We ex-
ploit this fact in the evaluation of the term (1.7) 
which we will rewrite slightly. Instead of ex-
panding (1.7) into one term for computing the 
stem and one for the affix, we make the assump-
tion that any evidence that the possible stem is a 
stem, also counts as evidence that the putative 
affix is an affix, and vice versa. Accordingly, the 
two propositions are combined into one, so that 
(1.7) becomes 

 ( ( , ) | )p stemsuff x y W  (1.12) 

This term gets its value solely from the as-
sessment of meaning as follows. The stem x is in 
the word context xy so we ask what the probabil-
ity is that x has any meaning given this contex-
tual information. This is turned into an issue of 
predictive probability: what is the chance of find-
ing a meaningful string in front of y? For exam-
ple, in English, what is the probability for a to-
ken to have meaning in the context 

  
x.ing=[open.ing, str.ing, s.ing, r.ing, laugh.ing, 

talk.ing]?  
 
Three of the x’s have an independent distribution 
on their own, namely [open, laugh, talk], so out 
of these six, the chance is 50% for anything 
picked out in front of ing is a standalone word 
and carrying meaning using this measure. Note 
that the stem itself in stem affix combination is 
not evaluated directly. The independent distribu-
tion of stems is used in classifying the affix 
which in turn classifies the stem. 

A predictive probability measure formulated 
on the basis of the foregoing discussion is then 
the ratio of actual words in y* to y*.  

 

( ( , ) | )
| * |

| * |

p stemsuff x y W

y W
y

=
∩=

 (1.13) 

As for the case of selection, a beta density is 
used to localize this ratio. The actual probability 
assigned takes the standard deviation of this den-
sity into account in the same way as for the se-
lection. Affixes with low frequency is penalized 
by this way of calculating the probability. 

A crucial assumption for this approach to 
work is that the empty suffix is a witness for 
meaning through the word list. A mild supervi-
sion can be built into the learner by supplying 
other witness morphs that can be used as context 
for a possible stem. Using the word list as a wit-
ness set for meaning presupposes that a good 
portion of stems are actual words, enough so that 
different affixes can be distinguished on the basis 
of it.  

With access to a corpus a better model of 
meaning can be formulated, as shown in (Schone 
& Jurafsky, 2000). 

2.3 Combining the results 

The probabilities from each of these estimates 
are combined for each hypothesis resulting in a 



total score, and ranking of all the hypotheses. 
The decision scheme adopted is to select the best 
hypothesis, i.e. the one with highest probability. 
An alternative method could be iterative: remove 
the worst and recalculate the probabilities, and 
repeat that process until only one hypothesis re-
mains.  

Selecting the highest ranked hypothesis results 
in an F-score of 45%, recall at 54%, and preci-
sion at 39% for the English word list, using the 
tools available for the competition. 

3 Conclusion and further work 

We have shown how one can use the concept of 
meaning in evaluating the different candidates 
for morphological analysis. The method should 
lend itself to all languages that permit a certain 
proportion of its stems to occur as words.  

The work reported here is in a state of flux and 
particularly equation (1.11) is explored. 
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