
Swordfish: Using Ngrams in an Unsupervised Approach to Morphological
Analysis

Chris Jordan∗

Dalhousie University
6050 University Ave.

Hfx., NS, Canada B3H 1W5
cjordan@cs.dal.ca

John Healy
Dalhousie University
6050 University Ave.

Hfx., NS, Canada B3H 1W5
healy@cs.dal.ca

Vlado Keselj†
Dalhousie University
6050 University Ave.

Hfx., NS, Canada B3H 1W5
vlado@cs.dal.ca

Abstract

Morphological analysis refers to the art
of separating a word into its base units
of meaning, or morphemes. Many popu-
lar approaches to this, including Porter’s
algorithm, have been rule-based. These
rule-based algorithms however, generally
only perform stemming, the identification
of root morphemes, which is only a part of
morphological analysis. Such algorithms
can only reasonably be applied to lan-
guages with a limited number of possible
affixes for a given term. Rule based algo-
rithms require a great deal more complex-
ity in order to handle languages with many
affixes reliably. We propose Swordfish,
an ngram-based unsupervised approach to
morphological analysis, as an alternative.
An ngram is simply a substring of length
n which occurs within a corpus. We take
those ngrams with the highest probabili-
ties of occurring within our corpus to be
our candidate morphemes. We apply
a recursive algorithm, which repeatedly
splits a term using a probabilistic-based
criterion. The evaluation on the PAS-
CAL dataset shows somewhat better per-
formance on English and worse on Finnish
and Turkish word lists than the state-of-
the-art system Morfessor, with a signifi-
cantly lower cost in running time.

1 Introduction

Words in a language are typically a combination
of smaller base units of meaning, referred to as

∗http://www.chrisjordan.ca
†http://www.cs.dal.ca/∼ vlado/

morphemes. The act of separating a word into its
morphemes is called morphological analysis. For
example, the code block below illustrates the mor-
phemes in the word “pretested”:

pre + test + ed

Morphological analysis is an important task, as
it allows for the identification of the base units
of meaning in a word. Morphemes can be used
to identify terms which are semantically similar.
This is a common process in document retrieval
and has been shown to improve performance of
these systems (Kantrowitz et al., 2000). Mor-
phemes are also useful in speech recognition (Si-
ivola et al., 2003) since in many languages the
spelling and pronunciation of a word are directly
related.

Finding morphemes, unfortunately, is not al-
ways simple to do particularly in compounding
languages such as Finnish, German, Swedish or
Greek; and in highly inflective languages such as
Finnish and Hungarian (Hirsimäki et al., 2005).
Rule-based stemmers such as Porter’s Algorithm
(Baeza-Yates and Ribeiro-Neto, 1999) have had
some success in identifying and removing affixes
in the English language. However, English is not
a particularly complex language, at least in terms
of affixes. There are typically only one or two pre-
fixes or suffixes possible for most words. A rule-
based approach for compounding or highly inflec-
tive languages is not particularly effective, due to
the sheer number of possible word forms. Simi-
larly, to develop training data for a supervised ap-
proach would require an inordinate effort to gain
an appropriate level of coverage.

An unsupervised approach to morphological
analysis is attractive for highly inflective lan-
guages and languages with extensive use of com-



pounding. Additionally, an unsupervised ap-
proach by definition requires no or minimal lin-
guistic knowledge, which makes it convenient for
less common languages and languages with sparse
linguistic resources. An ideal unsupervised ap-
proach, by definition, should require no training
data and very little user input in order to learn the
morphemes for a given language. Furthermore, an
ideal unsupervised approach should be language-
independent and, as such, should be able to extract
morphemes from any language, given enough ex-
posure to it. Swordfish is such an approach. The
Swordfish algorithm processes a corpus that lists
terms and their respective frequencies. A language
model is built, using ngram frequencies, and can-
didate morphemes are identified within words.

2 Previous Work

Morphological analysis and stemming are two
similar text processing tasks. Morphological anal-
ysis identifies all the morphemes in a word, while
stemming finds the root morpheme or stem for
a term. Since stems are morphemes themselves,
stemming is a subset of morphological analy-
sis. Porter’s algorithm (Baeza-Yates and Ribeiro-
Neto, 1999) is a popular rule-based approach to
stemming words in the English language. There
are other rule-based approaches (Kantrowitz et al.,
2000; Frakes and Fox, 2003) each differing in
the degree to which they will stem a term. The
stronger the stemmer, the more a word is altered
and the smaller the document index. Retrieval
recall also tends to increase with the strength of
the stemmer, while precision decreases. While
rule-based approaches do encounter some success
in the English language, they are less successful
when applied to compounding or highly inflective
languages (Hirsimäki et al., 2005).

There has been a limited amount of work done
in the area of unsupervised morphological anal-
ysis. One proposed approach is Morfessor (Hir-
simäki et al., 2005; Creutz and Lagus, 2005),
which recursively builds a morpheme lexicon. It
begins by initializing the set of candidate mor-
phemes, the morpheme lexicon, as the entire vo-
cabulary. Using the frequencies which these mor-
phemes occur in the corpus, Morfessor passes
through the entire vocabulary, splitting words into
the most likely morphemes. Each word is recur-
sively split into the two most likely substrings until
such a split is less probable than the substring be-

ing split. The morpheme lexicon is updated with
the resulting splits. Passes through the vocabu-
lary are made until the lexicon can no longer be
improved. Essentially, the Morfessor algorithm
looks for the most likely morphemes by split-
ting words in the most likely manner. The can-
didate morpheme lexicon which is produced tends
to have good precision though it suffers from low
recall. Recall and precision in morphological anal-
ysis are standard measures expressed in terms of
correctly and incorrectly identified “breakpoints”
within a word. These measures will be explained
in more details in later sections.

A significant component to the Swordfish algo-
rithm is a suffix array which is used to extract the
ngrams. The Yamamoto–Church algorithm (Ya-
mamoto and Church, 2001), modified slightly to
handle a list of term frequencies instead of reg-
ular text, was employed here due to its ease of
implementation and O(N log(N)) run time. In
the proposed Swordfish algorithm presented here,
ngrams used during the morphological analysis
must also be a longest common prefix (LCP) with
a length greater than or equal to 1. Hence only
those ngrams that occur in multiple terms will be
considered as candidate morphemes.

3 Swordfish

The Swordfish algorithm consists of two main
phases. The first phase computes the ngram fre-
quencies for our corpus via a modified Yamamoto-
Church algorithm (Yamamoto and Church, 2001)
that deals with word lists instead of regular text.
We include all n-grams, i.e., word substrings,
of lengths ranging from 1 to the maximal word
length. This phase of our algorithm takes up the
majority of run time and memory usage. The re-
sulting set of ngrams are treated as a lexicon of
possible morphemes. With this lexicon, it is possi-
ble to calculate a probability model for the ngrams
using maximum likelihood estimates (MLE) as
shown in Equation 1.

P (ngrami) =
freq(ngrami)∑
freq(ngramn)

(1)

where P (ngrami) is the probability of ngrami in
the corpus probability model. freq(ngrami) is the
frequency which ngrami occurs in the corpus and∑

freq(ngramn) is the total number of ngram oc-
currences in the corpus.

The second phase uses our ngram frequencies to
determine probable splits for dividing words into



their base morphemes. There are several plau-
sible methods for dividing a word into its base
morphemes. We make the assumption that, since
words are built up from morphemes, we expect
to see the ngrams representing these morphemes
more frequently than we would a random string of
characters of equal length.

The steps Swordfish takes to split terms are as
follows:

Step 1: Calculate the probability of the current
term occurring in the ngram lexicon. This proba-
bility is calculated using the MLE. If the term does
not occur in the lexicon then it has a probability of
0 or only appears as a substring of a unique larger
ngram.

Step 2: Find the two ngrams with the highest
probability of forming the term. The probability
of two ngrams forming a particular term is consid-
ered to be the product of their probabilities in the
lexicon. In other words, given a term t we identify
the two subterms x′ and y′ as:

(x′, y′) = arg max
xy=t

P (x)P (y)

Step 3: If the probability of the current term is
less than the product of the two ngrams in Step
2 then the term is split into its two constituent
ngrams. These ngrams are then considered to be
terms themselves and Steps 1–3 are repeated.

Step 4: The final set of ngrams that result from
Step 3 are considered to be the morphemes for the
original term.

The Swordfish algorithm essentially considers
all ngrams to be possible morphemes. For a given
term, it recursively splits it into two substrings
based on the most likely combination of ngrams.
The set of ngrams resulting from this splitting pro-
cess are the suggested morphemes for the original
term. The Swordfish algorithm has two strong ad-
vantages. First, it is parameter-free and thus re-
quires no tuning on the part of a user; second, it
is a purely unsupervised approach, requiring no
training data to accomplish its task.

4 Evaluation

The development of Swordfish was prompted by
PASCAL’s 2005 challenge to facilitate the unsu-
pervised segmentation of words in to morphemes
(Morpho Challenge, 2005). For this reason, we
use both their corpus and their methodologies to
evaluate our algorithm. They use three corpora:

one in English; one in Finish; and one in Turk-
ish. The corpora were presented in term frequency
lists derived from real world corpora. Currently,
Swordfish requires this format in order to run, so
any text document would have to be preprocessed
into a term frequency list beforehand.

The algorithms for this challenge are evaluated
by sampling a gold standard data set that con-
tains a subset of the terms split into their appro-
priate morphemes. These splits are referred to
as surface-level segmentations, or segmentations
that contain exactly the same characters as the ini-
tial term. Thus where a more traditional mor-
phological analysis might separate ’unsupervised’
into ’un+supervise+ed’ our ideal separation will
be ’un+supervis+ed’.

This evaluation is not weighted by frequency of
terms. For example, an error on the term ’the’
would be equivalent to an error on the term ’ag-
glutinative’. The metrics used to evaluate perfor-
mance are precision, recall, and F-measure. In or-
der to compute these values one runs an algorithm
across a given term frequency list and divides the
terms into morphemes. A random subset of these
terms have been tagged and provided to partici-
pants as an evaluation set. Of these, a random sam-
ple has been selected to evaluate the performance
of the various algorithms.

5 Results

Table 1 compares the results for precision, recall
and F-measure scores from a baseline run, which
shows the results of placing a split between ev-
ery character, Morfessor, and the Swordfish al-
gorithm. From initial inspection based on the F-
measure, we can see that Swordfish outperforms
Morfessor on English while Morfessor produces
more accurate results on Finnish. The baseline
outperforms both approaches on Turkish.

At its heart, this problem can be thought of as a
classification problem, with the division between
each character in every term being classified as
either a morpheme boundary or not a morpheme
boundary. This reduces our precision/recall prob-
lem to the traditional problem of false positives
vs false negatives. A false positive refers to a
morpheme boundary being predicted at a location
where no morpheme boundary exists while a false
negative refers to a morpheme boundary uniden-
tified as such. From this point of view, it is evi-
dent that Morfessor has accepted a large number



Language Algorithm Precision Recall F-measure
English Baseline 14.56 100.00 25.42

Morfessor 74.19 26.64 39.20
Swordfish 55.11 37.45 44.60

Finnish Baseline 19.71 100.00 32.92
Morfessor 83.66 29.51 43.63
Swordfish 70.39 23.58 35.33

Turkish Baseline 25.87 100.00 41.11
Morfessor 76.33 24.17 36.71
Swordfish 58.90 16.79 26.13

Table 1: Comparison of algorithms: precision, recall, F-measure

of false negatives, thus its low recall, in order to
minimize its false positives, and thus keep a high
level of precision.

Swordfish has similar performance to Morfes-
sor. Both algorithms have a precision that is much
higher than its recall, over all languages. Com-
paring Swordfish with Morfessor in the analy-
sis of English, Swordfish has higher recall and
lower precision. In the analysis of Finnish and
Turkish, Morfessor has a higher precision and re-
call. From these preliminary results, it appears
that morphemes in English can be more easily ex-
tracted using ngrams, while the recursive approach
to building a morpheme lexicon used in Morfes-
sor is more effective for Finnish. Neither approach
appear to be effective for Turkish though the high
precision scores do indicate promise for further re-
search on them.

Two factors not taken into consideration in this
evaluation are running times and memory usage of
the algorithms. In our initial experiments Morfes-
sor seems to be an order of magnitude slower than
Swordfish. Data sets that took a few hours with
Swordfish took closer to a day to run with Morfes-
sor.

On the other hand, Swordfish seems to use ap-
proximately an order of magnitude more memory
than Morfessor. In our experiments we’ve seen
Morfessor use 300MB of memory to process a
20MB file while Swordfish took 3GB to process
the same file. Swordfish is currently implemented
in Perl and uses some very inefficient hashes to
store its suffix arrays and LCP tables.

It should also be noted that these numbers are
just observations and more formal benchmarking
will be required before any concrete comparisons
of memory usage and running time can be made
between the two algorithms.

6 Conclusions

In this work, we present Swordfish, a recursive ap-
proach to morphological analysis using ngrams.
It is purely unsupervised and requires no param-
eter tuning or supervised training. It constructs
an ngram lexicon from which all candidate mor-
phemes are drawn. Morphemes are extracted from
terms based on the most probable combination of
ngrams.

A major component of the Swordfish algorithm
is a Perl module implementing the Yamamoto–
Church algorithm used to calculate our ngram fre-
quencies. Currently this algorithm is particularly
memory intensive due to heavy use of Perl hashes.
There is current development to make this module
more memory efficient, which should result in a
dramatic decrease in the memory necessary to run
the Swordfish algorithm.

Regardless, the Swordfish algorithm is a time-
efficient algorithm and results in moderately high
precision. Unfortunately, it suffers from low re-
call. We believe that using a ngram lexicon as the
foundation for performing morphological analysis
shows a lot potential. Further research should go
into how the probabilities of ngrams are compared
to the probabilities of terms. The method used
here, where the probability of the term is com-
pared to the product of the ngram probabilities is
rather simplistic. A better method for comparison
may lead to improved recall.

As well, further investigation should be con-
ducted into how the ngram lexicon is constructed.
Obviously, not all ngrams are morphemes for a
language. In our current approach though, all
ngrams are considered possible morphemes. The
lexicon might be improved by filtering out ngrams
that are determined to not be morphemes. This
process can be considered to be “removing noise”



from the lexicon and may lead to greater precision.
Both algorithms here were evaluated against

randomly selected terms. Unfortunately, there was
no evidence to suggest conclusively that our re-
sults were not simply an aberration. In order to
properly evaluate our algorithm we would like to
repeatedly bootstrap our gold standard in order to
generate test sets. These test sets could be used to
create confidence intervals for our precision, recall
and F-measure.

In the results reported here, Swordfish outper-
forms Morfessor on English but Morfessor is bet-
ter on Finnish and Turkish. The use of an ngram
lexicon, as implemented in Swordfish, has poten-
tial as an unsupervised approach to morphological
analysis. There is still a great deal of work that
could be done to improve the algorithm, especially
with regards to the Turkish language. It remains to
be seen whether a language-independent approach
to morpheme extraction will succeed, or whether
the problem will require differing approaches for
different families of languages.

7 Acknowledgments

This research was funded by the Natural Sciences
and Engineering Research Council of Canada,
NSERC and Sun Microsystems.

References

Mark Kantrowitz, Behrang Mohit, and Vibhu Mittal.
2000. Stemming and its effects on TFIDF rank-
ing (poster session). SIGIR ’00: Proceedings of
the 23rd annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, 357–359.

Vesa Siivola, Teemu Hirsimäki, Mathias Creutz, and
Mikko Kurimo. 2003. Unlimited Vocabulary
Speech Recognition Based on Morphs Discovered
in an Unsupervised Manner. Proc. Eurospeech’03,
2293-2296.

Teemu Hirsimäki, Mathias Creutz, Vesa Siivola, Mikko
Kurimo, Sami Virpioja, and Janne Pylkkönen.
2005. Unlimited vocabulary speech recognition
with morph language models applied to Finnish.
Computer, Speech and Language.

R. Baeza-Yates and B. Ribeiro-Neto. 1999. Modern
Information Retrieval. Addison-Wesley.

William B. Frakes and Christopher J. Fox. 2003.
Strength and similarity of affix removal stemming
algorithms. SIGIR Forum, 37(1): 26–30.

Mathias Creutz and Krista Lagus. 2005. Unsupervised
Morpheme Segmentation and Morphology Induc-
tion from Text Corpora Using Morfessor 1.0. Tech-
nical Report: A81. Helsinki University of Technol-
ogy.

Mikio Yamamoto and Kenneth W. Church. 2001. Us-
ing suffix arrays to compute term frequency and doc-
ument frequency for all substrings in a corpus. Com-
put. Linguist., 27(1): 1–30.

PASCAL Unsupervised Segmentation of Words into
Morphemes Challenge 2005. 2006. WWW:
http://www.cis.hut.fi/morphochallenge2005/.


