
Simple Unsupervised Morphology Analysis Algorithm (SUMAA)

Minh Thang Dang
School of Computing
University of Leeds
Leeds LS2 9JT, UK

thangdang@hotmail.co.uk

Saad Choudri
School of Computing
University of Leeds
Leeds LS2 9JT, UK

saad.choudri@gmail.com

Abstract

SUMAA is a hybrid algorithm based
on letter successor varieties for an en­
tirely unsupervised morphological
analysis. Using language pattern and
structural recognition it works well on
both isolated and agglutinative lan­
guages. This paper gives a detailed
analysis of how we developed
SUMAA. F-Measures (MorphoChal­
lenge, 2005) achieved by SUMAA for
the English, Finnish and Turkish
datasets were 51.83%, 60.18% and
55.94% respectively.

1 Introduction

Unsupervised automated word segmentation
is required for morphological analysis to re­
place human intervention, with the primary
goal to determine the location of breaks be­
tween morphemes within words. In this pa­
per we describe an algorithm that segments
words into morphemes on an unsupervised
basis, i.e. with no prior knowledge (e.g. a
dictionary) of the corpus under considera­
tion. The algorithm is applied to both agglu­
tinative languages, where words are
composed of fused morphemes denoting
their syntactic meanings, and isolating lan­
guages where a majority of morphemes are
considered to be full fledged words
(Wikipedia, 2005). In the provided corpora,
Turkish and Finnish represent the former and
English represents the latter (Wikipedia,
2005). A generic characteristic between the
three is that of varying forms of meta-

phonics, vowel harmony, unlike e.g.
Cantonese, which we think avoids
“overfitting” (Mitchell, 1997). The corpora
and evaluation script are available on the
MorphoChallenge 2005 official web page
(http://www.cis.hut.fi/morphochallenge2005/)
which compare our results to a gold
standard, or “desired” result. Evaluation
measures used are Precision, Recall and F-
Measure. Precision is a calculation of the
number of correct cuts made against the total
cuts made, Recall is the total number of
correct cuts made against the total possible
boundaries and the F-Measure is a harmonic
mean of the two (MorphoChallenge, 2005).
The F-Measure’s we obtained for testing our
algorithm on English, Finnish and Turkish
were 51.83%, 60.18%and 55.94%
respectively. Section 2 explains the “letter
successor varieties” approach (Hafer and
Weiss, 1974) on which our algorithm is
based. Section 3 describes our most relevant
experiments leading up to our algorithm. The
morpheme boundary statistics are visualised
for all our experiments on English in figure 3
and our preferred experiments on all three
languages in figure 5. Section 3.4 and 3.5 de­
scribe our final algorithm and data structure
respectively. The pseudo code is in Table 1
located at the end of section 3.

2 Letter Successor Varieties

Hafer and Weiss (1974) suggested a method
called “letter successor varieties” for seg­
menting lexical text into stems and affixes
based on Z.S Harris’s solution to the prob­
lem of morpheme discovery for phonetic

text. The method uses statistical properties,
successor and predecessor variety counts, of
a corpus to indicate where words should be
divided (Hafer and Weiss, 1974).

2.1 Successor varieties and predecessor
varieties

The successor frequency (we use the term
frequency and variety interchangeably), de­
fined as W [1...n], of the nth letter of a word
is the total number of distinct letters occur­
ring at the n+1st position in the words of a
corpus that match this set of letters from the
selected word. Figure 1 illustrates this, and
has been adapted from Hafer and Weiss’s
paper. In the example, “READABLE” is the
“test” word in the corpus consisting of 11
words. If n=1 then the prefix is “R” and
comparing “R” to the rest of the words gives
a total of 3 distinct letters “E”, “O” and “I”
occurring at position n+1. Hence, the succes­
sor variety is 3. The same is repeated for W
[1...2] until n reaches the end of the word.
The results are shown. The predecessor vari­
ety is a similar concept but with the reverse
of the test word, e.g. “ELBADEAR”, and the
reverse of the corpus (Hafer and Weiss,
1974). This is also shown in figure 1 under
the heading of “Predecessor Variety”.

2.2 Experimental design
Hafer and Weiss (1974) proposed four basic
segmentation strategies that use the statisti­
cal method mentioned, viz. cut-off, peak and
plateau, complete word and entropy. Our al­
gorithm is based on the peak and plateau de­
sign. Take Sn to be the successor count S of
the position n in a word W. A cut is made in
W after a prefix denoted by the successor

count Sn forms a local peak or a plateau of
the count vector. The same is applied with
predecessor count. In the example discussed
in section 2.1, the predecessor count and the
successor count both suggest that “READ”
and “ABLE” are affixes. Figure 1’s 2nd and
3rd columns show the “*” at “3” marking the
“peak” of the counts found for both varieties.

3 Our experiments leading up to our
proposed algorithm

This section describes only a few of our ex­
periments that have lead to our final solution
which is described in section 3.4. Their re­
sults are visualised in figure 3.

3.1 Successor frequency at peak/plateau
(SF)

By applying only the successor variety
counts the results obtained for English were
F-Measure 37.95%, Precision 43.00% and
Recall 33.97%. This method appeared to
split words at the beginning as “peaks” tend
to occur there and occasionally ended up
with splits such as “cre dit ing” for “credit­
ing” and “cre wmen” for “crewmen”.

3.2 Predecessor frequency at
peak/plateau (PF)

We then tried the “predecessor frequency at
peak/plateau” a reverse of the above method.
The results improved to an F-Measure of
41.43%, Precision of 41.67% and Recall of
41.20% for English. This is because the
words in the corpus are more heavily suf­
fixed than prefixed. In this case “crediting”
was split as “credit ing”.

Figure 1. Letter successor varieties recreated from Hafer and Weiss (1974).

3.3 Successor and predecessor frequen­
cy at peak/plateau

We realised that the words not segmented by
method 3.1 were segmented correctly by
method 3.2. Thus we tried a combination of
the two. First, we segmented the words using
SF and then for the words that had not been
segmented, we segmented them using PF.
The improved results for English were now
44.36%, 42.81% and 46.04% for F-Measure,
Precision and Recall respectively. We ap­
plied this to Turkish and got an F-Measure of
53.24%, Precision of 60.45% and Recall of
47.57%. With Finnish we got an F-Measure
of 58.03%, Precision of 63.88% and Recall
of 53.16%. Trying a reverse of the combina­
tion, i.e. PF first and SF second, did not give
good results. For English we got 42.48%,
40.27% and 44.94% for F-Measure, Preci­
sion and Recall respectively.

3.4 Our proposed algorithm, SUMAA
So far the first combination of SF and PF
(SFPF) has shown the best results. However
in the result files, splits like “abandonedly”
as “abandon edly” and “acceptances” as “ac­
cept ances” were noticed. Analysing the cor­
pora we saw that if one word was a substring
of a word below it, it was often a morpheme
of that word. We applied this concept to our
algorithm. This procedure resembles the
bubble sort algorithm except after the com­
parison the words are not sorted and remain
in their original positions. This is illustrated
in figure 2. Consider an extraction of the En­
glish corpus in the following order: aaa,

abandon, abandoned and abandonedly. The
steps are as below:

Figure 2. Bubble sort string boundary finder ex­
ample.

1. Read “aaa”. As it has no preceding word,
apply SFPF & segment it .Print to file.

2. Read “abandon”. Check if it has the pre­
ceding string “aaa”. It doesn't, so seg­
ment it with SFPF and print to file.

3. Read “abandoned”. It contains its preced­
ing word, so first segment it into “aban­
don” and “ed” and then apply SFPF to
the left side split (“abandon”). Print to
file.

4. Read “abandonedly”. It contains its pre­
ceding word, so segment it into “aban­
doned” and “ly” and then apply SFPF to
the left side split (“abandoned”). In this
case, “abandoned” segmented by SFPF
resulted in “abandon” and “ed”. Thus the
word is finally segmented into
“abandon”, “ed” and “ly”. Print to file.

The results were F-Measure 51.83%, Preci­
sion 48.06% and Recall 56.23% for English,
F-Measure 55.94%, Precision 59.39% and
Recall 52.87% for Turkish; and for Finnish
they were F-Measure 60.18%, Precision

37.95
42.48

51.83

43 41.43
44.36 48.06

40.27

41.67
42.81

56.23

44.94

41.2

46.04

33.97

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

6 0

S F P e a k / P l a t e a u P F P e a k / P l a t e a u P F S F P e a k / P la t e a u S F P F P e a k / P la t e a u S U M A A

F m easure P recision Recall

Figure 3. Results, section 3.1, 3.2, 3.3 both combos and 3.4 for tests on English.

64.97% and Recall 56.04%. As the Mor­
phoChallenge requires a high F-Measure,
this experiment is very fruitful (shown in fig­
ure 5). This new algorithm performed sur­
prisingly well on Turkish and Finnish. It per­
formed better for Finnish than it did for
Turkish and not to mention for English!
Pseudo code for SUMAA is in table 1.
SUMAA seems to have worked particularly
well on Finnish with an F-Measure of
60.18% and Precision of 64.97%.

3.5 Data Structure

Figure 4. The trie constructed from the words:
BIG, BILL, GOOD, GOSH

For letter successor varieties, words of a cor­
pus have been represented as a data structure
called a trie (please refer to (Huynh et al.) for
more details) as shown in figure 4. Each
node represents a letter and contains a suc­
cessor count. The root represents a null
string and each branch represents a word.
Consider the following words: “BIG”,”
“BILL”, “GOOD”, “GOSH”.

Let’s take “BIG” as the test word. To calcu­
late the successor count of the prefixes of
“BIG”, we traverse from the root and then
retrieve the successor counts of “B”, “BI”
and “BIG” which are 1, 2, and 0 respective­
ly. By organising all words and their reverse
words in a corpus in this form, we can effi­
ciently retrieve the SFPF counts of any pre­
fixes or suffixes of a word. In our algorithm
we implemented 2 tries, one for retrieving
successor counts and one for retrieving pre­
decessor counts. The trie for retrieving pre­
decessor counts was built from the reverse
words in the corpora. In doing this, it took
less than 3 minutes to segment the whole
corpus of Finnish (MorphoChallenge, 2005)
which includes 1,636,336 word types on a
computer using an AMD 2800+ CPU with
512MB RAM.

4 Conclusion

This paper is a summary of our detailed re­
search which includes experiments with a
version of MDL using a codebook, and other
versions of the letter successor varieties such
as “cut-off”. We abandoned the idea of using
the former as it took too much time due to
recursive string comparisons and on a stan­
dard current day PC, it would have taken 4
days to compute the Finnish corpus as op­
posed to this algorithm that takes under 3
minutes. The “cut-off” experiment was not
used, although it was efficient, as there was a
fear that it would cause overfitting problems
for Finnish as it used predefined values.

53.24

60.45

47.57

55.94
59.39

52.87
58.03

63.88

53.16

60.18
64.97

56.04

44.36 42.81
46.04

56.23

48.06
51.83

0

10

20

30

40

50

60

70

F measure Precision Recall

StatisticsTurkish SFPF Peak/Plateau Turkish SUMAA Finnish SFPF Peak/Plateau

Finnish SUMAA English SFPF Peak/Plateau English SUMAA

Best overall performance on Finnish

Figure 5. Results for Turkish, Finnish and English with SFPFPeak/Plateau & SUMAA.

Table 1. SUMAA pseudo-code.

It performed well over Turkish but not as
well as SUMAA.

SUMAA detected a majority of both true
and incorrect boundaries for English with re­
spect to the other languages. This may be be­
cause the English corpus contained multi-
language words such as “abbotabad” (where
abad means population in Urdu), a city in
Pakistan. Although it did segment “abbot”

and “abad” correctly there were problems
with other such noise in the data, which
could have lead to the F-Measure and Preci­
sion drop. Modelled on English, which is
considered to be an isolated language,
SUMAA performs better on agglutinative
languages and hence our algorithm is robust
against overfitting. Figure 5 shows a com­
parison of SFPF and SUMAA (section 3.3
and 3.4) on all three languages as those ob­
tained the highest results. We propose
SUMAA as a very useful and efficient mor­
phological analysis system.

References
David Huynh, David Breton and Evelyne

Robidoux. Tries and suffix trees. Winter
1997 Class Notes. School of Computer
Science, McGill University.

John Elliott and Eric Atwell. 2000. Is any­
body out there? The detection of Intelli­
gent and Generic Language-Like Fea­
tures. JBIS, 53:13-22.

John Goldsmith. 2001. Unsupervised learn­
ing of the morphology of a natural lan­
guage. Computer Linguistics, 27:153-
198.

Mathias Creutz and Krista Lagus. 2005. Un­
supervised morpheme segmentation and
morphology induction from text corpora
using morfessor 1.0. Publications in
Computer and Information Science, Re­
port A81, Helsinki University of Tech­
nology. Finland.

Margaret A. Hafer and Stephen S. Weiss.
1974. Word segmentation by letter suc­
cessor varieties. Information Storage &
Retrieval, 10:371-385.

MorphoChallenge. 2005. EU Network of Ex­
cellence PASCAL Challenge Program.
http://www.cis.hut.fi/morphochallenge20
05/.

Tom M. Mitchell. 1997. Machine learning.
New York; London, McGraw-Hill.

Wikipedia. 2005. The Free Encyclopedia.
http://www.wikipedia.org/.

Main()
{
 BuildTries(); // Build 2 tries,
 // one from the words as they are and

 // one from them reversed.
 For each word in the corpus
 {
 If the word contains its preceding word
 {
 Segment the word into 2 parts using the
 boundary of the shorter word;
 SegmentUsingSuccessor(left part);
 Print the right part to file at the end of the

 current line;
 } Else
 {
 SegmentUsingSuccessor(word);
 }
 }
}
SegmentUsingSuccessor(word)
{
 For each substring S of the word
 {
 Calculate the successor count S

n
;

 If found a local peak/plateau
 Save this position to an array of split

 points;
 }
 If the array of split points empty // No split point

 // found
 //Try to segment the word

 //using Predecessor frequency

 SegmentUsingPredecessor(word);
 Else,
 Use the array of split points to segment the
 word and print to file;
}
SegmentUsingPredecessor(word)
{
 Reverse the word;
 For each substring S of the reverse word
 {
 Calculate the predecessor count P

n
;

 If found a local peak/plateau
 Save this position to an array of split

 points;
 }
 If the array of split points empty // No split point

 // found
 Print the whole word to file;
 Else,

 Use the array of split points to segment the word
 and print to file;
}

http://www.cis.hut.fi/morphochallenge2005/
http://www.cis.hut.fi/morphochallenge2005/
http://www.wikipedia.org/

