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Abstract

SUMAA is a hybrid algorithm based 
on letter successor varieties for an en­
tirely  unsupervised  morphological 
analysis. Using language pattern and 
structural recognition it works well on 
both  isolated  and  agglutinative  lan­
guages.  This  paper  gives  a  detailed 
analysis  of  how  we  developed 
SUMAA.  F-Measures  (MorphoChal­
lenge, 2005) achieved by SUMAA for 
the  English,  Finnish  and  Turkish 
datasets  were  51.83%,  60.18%  and 
55.94% respectively.

1 Introduction

Unsupervised automated word segmentation 
is required for morphological analysis to re­
place human intervention, with the primary 
goal to determine the location of breaks be­
tween morphemes within words. In this pa­
per we describe an algorithm that segments 
words  into  morphemes  on  an  unsupervised 
basis,  i.e.  with  no  prior  knowledge  (e.g.  a 
dictionary)  of  the  corpus  under  considera­
tion. The algorithm is applied to both agglu­
tinative  languages,  where  words  are 
composed  of  fused  morphemes  denoting 
their  syntactic  meanings, and isolating lan­
guages where a majority of morphemes are 
considered  to  be  full  fledged  words 
(Wikipedia, 2005). In the provided corpora, 
Turkish and Finnish represent the former and 
English  represents  the  latter  (Wikipedia, 
2005). A generic characteristic between the 
three  is  that  of  varying  forms  of  meta-

phonics,  vowel  harmony,  unlike  e.g. 
Cantonese,  which  we  think  avoids 
“overfitting”  (Mitchell,  1997).  The  corpora 
and  evaluation  script  are  available  on  the 
MorphoChallenge  2005  official  web  page 
(http://www.cis.hut.fi/morphochallenge2005/) 
which  compare  our  results  to  a  gold 
standard,  or  “desired”  result.  Evaluation 
measures used are Precision, Recall  and F-
Measure.  Precision  is  a  calculation  of  the 
number of correct cuts made against the total 
cuts  made,  Recall  is  the  total  number  of 
correct cuts made against  the total  possible 
boundaries and the F-Measure is a harmonic 
mean of the two (MorphoChallenge, 2005). 
The F-Measure’s we obtained for testing our 
algorithm on  English,  Finnish  and  Turkish 
were  51.83%,  60.18%and  55.94% 
respectively.  Section  2  explains  the  “letter 
successor  varieties”  approach  (Hafer  and 
Weiss,  1974)  on  which  our  algorithm  is 
based. Section 3 describes our most relevant 
experiments leading up to our algorithm. The 
morpheme boundary statistics are visualised 
for all our experiments on English in figure 3 
and  our  preferred  experiments  on  all  three 
languages in figure 5. Section 3.4 and 3.5 de­
scribe our final algorithm and data structure 
respectively. The pseudo code is in Table 1 
located at the end of section 3.

2 Letter Successor Varieties

Hafer and Weiss (1974) suggested a method 
called  “letter  successor  varieties”  for  seg­
menting lexical  text  into stems  and affixes 
based on Z.S Harris’s solution to the prob­
lem  of morpheme discovery for phonetic



text.  The method uses statistical  properties, 
successor and predecessor variety counts, of 
a corpus to indicate where words should be 
divided (Hafer and Weiss, 1974).

2.1 Successor varieties and predecessor 
varieties

The  successor  frequency  (we  use  the  term 
frequency and variety interchangeably),  de­
fined as W [1...n], of the nth letter of a word 
is the total number of distinct letters occur­
ring at the n+1st position in the words of a 
corpus that match this set of letters from the 
selected word. Figure 1 illustrates this, and 
has  been  adapted  from  Hafer  and  Weiss’s 
paper. In the example, “READABLE” is the 
“test”  word  in  the  corpus  consisting  of  11 
words.  If  n=1  then  the  prefix  is  “R”  and 
comparing “R” to the rest of the words gives 
a total of 3 distinct letters “E”, “O” and “I” 
occurring at position n+1. Hence, the succes­
sor variety is 3. The same is repeated for W 
[1...2]  until  n reaches the end of the word. 
The results are shown. The predecessor vari­
ety is a similar concept but with the reverse 
of the test word, e.g. “ELBADEAR”, and the 
reverse  of  the  corpus  (Hafer  and  Weiss, 
1974). This is also shown in figure 1 under 
the heading of “Predecessor Variety”. 

2.2 Experimental design
Hafer and Weiss (1974) proposed four basic 
segmentation strategies that use the statisti­
cal method mentioned, viz. cut-off, peak and 
plateau, complete word and entropy. Our al­
gorithm is based on the peak and plateau de­
sign. Take Sn to be the successor count S of 
the position n in a word W. A cut is made in 
W after a prefix denoted by  the successor

count Sn  forms a local peak or a plateau of 
the count vector.  The same is applied with 
predecessor count. In the example discussed 
in section 2.1, the predecessor count and the 
successor  count  both suggest  that  “READ” 
and “ABLE” are affixes. Figure 1’s 2nd and 
3rd columns show the “*” at “3” marking the 
“peak” of the counts found for both varieties.

3 Our  experiments  leading  up  to  our 
proposed algorithm

This section describes only a few of our ex­
periments that have lead to our final solution 
which is described in section 3.4. Their re­
sults are visualised in figure 3.

3.1 Successor frequency at peak/plateau 
(SF) 

By  applying  only  the  successor  variety 
counts the results obtained for English were 
F-Measure  37.95%,  Precision  43.00%  and 
Recall  33.97%.  This  method  appeared  to 
split words at the beginning as “peaks” tend 
to  occur  there  and  occasionally  ended  up 
with splits such as “cre dit ing” for “credit­
ing” and “cre wmen” for “crewmen”.

3.2 Predecessor frequency at 
peak/plateau (PF)

We then tried the “predecessor frequency at 
peak/plateau” a reverse of the above method. 
The  results  improved  to  an  F-Measure  of 
41.43%, Precision of 41.67% and Recall of 
41.20%  for  English.  This  is  because  the 
words  in  the  corpus  are  more  heavily  suf­
fixed than prefixed. In this case “crediting” 
was split as “credit ing”.

Figure 1. Letter successor varieties recreated from Hafer and Weiss (1974).



3.3 Successor and predecessor frequen­
cy at peak/plateau

We realised that the words not segmented by 
method  3.1  were  segmented  correctly  by 
method 3.2. Thus we tried a combination of 
the two. First, we segmented the words using 
SF and then for the words that had not been 
segmented,  we  segmented  them  using  PF. 
The improved results for English were now 
44.36%, 42.81% and 46.04% for F-Measure, 
Precision  and  Recall  respectively.  We  ap­
plied this to Turkish and got an F-Measure of 
53.24%, Precision of 60.45% and Recall of 
47.57%. With Finnish we got an F-Measure 
of 58.03%, Precision of 63.88% and Recall 
of 53.16%. Trying a reverse of the combina­
tion, i.e. PF first and SF second, did not give 
good  results.  For  English  we  got  42.48%, 
40.27% and  44.94% for  F-Measure,  Preci­
sion and Recall respectively. 

3.4 Our proposed algorithm, SUMAA
So far  the first  combination  of  SF and PF 
(SFPF) has shown the best results. However 
in the result files, splits like “abandonedly” 
as “abandon edly” and “acceptances” as “ac­
cept ances” were noticed. Analysing the cor­
pora we saw that if one word was a substring 
of a word below it, it was often a morpheme 
of that word. We applied this concept to our 
algorithm.  This  procedure  resembles  the 
bubble sort algorithm except after the com­
parison the words are not sorted and remain 
in their original positions. This is illustrated 
in figure 2. Consider an extraction of the En­
glish  corpus  in  the  following  order:  aaa, 

abandon,  abandoned and abandonedly.  The 
steps are as below:

Figure 2. Bubble sort string boundary finder ex­
ample.

1. Read “aaa”. As it has no preceding word, 
apply SFPF & segment it .Print to file.

2. Read “abandon”. Check if it has the pre­
ceding  string  “aaa”.  It  doesn't,  so  seg­
ment it with SFPF and print to file.

3. Read “abandoned”. It contains its preced­
ing word, so first segment it into “aban­
don” and “ed” and then apply SFPF to 
the  left  side  split  (“abandon”).  Print  to 
file.

4. Read “abandonedly”. It contains its pre­
ceding word,  so segment  it  into  “aban­
doned” and “ly” and then apply SFPF to 
the left side split (“abandoned”). In this 
case,  “abandoned”  segmented  by  SFPF 
resulted in “abandon” and “ed”. Thus the 
word  is  finally  segmented  into 
“abandon”, “ed” and “ly”. Print to file.

The results were F-Measure 51.83%, Preci­
sion 48.06% and Recall 56.23% for English, 
F-Measure  55.94%,  Precision  59.39%  and 
Recall 52.87% for Turkish; and for Finnish 
they  were  F-Measure  60.18%,  Precision 
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64.97%  and  Recall  56.04%.  As  the  Mor­
phoChallenge  requires  a  high  F-Measure, 
this experiment is very fruitful (shown in fig­
ure  5).  This  new algorithm performed sur­
prisingly well on Turkish and Finnish. It per­
formed  better  for  Finnish  than  it  did  for 
Turkish  and  not  to  mention  for  English! 
Pseudo  code  for  SUMAA  is  in  table  1. 
SUMAA seems to have worked particularly 
well  on  Finnish  with  an  F-Measure  of 
60.18% and Precision of 64.97%.

3.5 Data Structure

Figure 4.  The trie  constructed from the words: 
BIG, BILL, GOOD, GOSH

For letter successor varieties, words of a cor­
pus have been represented as a data structure 
called a trie (please refer to (Huynh et al.) for 
more  details)  as  shown  in  figure  4.  Each 
node represents a letter and contains a suc­
cessor  count.  The  root  represents  a  null 
string  and  each  branch  represents  a  word. 
Consider  the  following  words:  “BIG”,” 
“BILL”, “GOOD”, “GOSH”. 

Let’s take “BIG” as the test word. To calcu­
late  the  successor  count  of  the  prefixes  of 
“BIG”, we traverse from the root and then 
retrieve  the  successor  counts  of  “B”,  “BI” 
and “BIG” which are 1, 2, and 0 respective­
ly. By organising all words and their reverse 
words in a corpus in this form, we can effi­
ciently retrieve the SFPF counts of any pre­
fixes or suffixes of a word. In our algorithm 
we implemented  2  tries,  one  for  retrieving 
successor counts and one for retrieving pre­
decessor counts. The trie for retrieving pre­
decessor  counts  was built  from the reverse 
words in the corpora. In doing this, it took 
less  than  3  minutes  to  segment  the  whole 
corpus of Finnish (MorphoChallenge, 2005) 
which  includes  1,636,336 word  types  on  a 
computer  using an AMD 2800+ CPU with 
512MB RAM.

4 Conclusion

This paper is a summary of our detailed re­
search  which  includes  experiments  with  a 
version of MDL using a codebook, and other 
versions of the letter successor varieties such 
as “cut-off”. We abandoned the idea of using 
the former as it took too much time due to 
recursive string comparisons and on a stan­
dard current day PC, it would have taken 4 
days to compute the Finnish corpus as op­
posed  to  this  algorithm that  takes  under  3 
minutes.  The “cut-off”  experiment  was not 
used, although it was efficient, as there was a 
fear that it would cause overfitting problems 
for Finnish as it used predefined values.
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Table 1. SUMAA pseudo-code.

It  performed  well  over  Turkish  but  not  as 
well as SUMAA.

SUMAA detected a majority of both true 
and incorrect boundaries for English with re­
spect to the other languages. This may be be­
cause  the  English  corpus  contained  multi-
language words such as “abbotabad” (where 
abad  means  population  in  Urdu),  a  city  in 
Pakistan.  Although  it  did  segment  “abbot” 

and  “abad”  correctly  there  were  problems 
with  other  such  noise  in  the  data,  which 
could have lead to the F-Measure and Preci­
sion  drop.  Modelled  on  English,  which  is 
considered  to  be  an  isolated  language, 
SUMAA  performs  better  on  agglutinative 
languages and hence our algorithm is robust 
against  overfitting.  Figure  5 shows a  com­
parison of  SFPF and SUMAA (section 3.3 
and 3.4) on all three languages as those ob­
tained  the  highest  results.  We  propose 
SUMAA as a very useful and efficient mor­
phological analysis system.
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Main()
{
     BuildTries(); // Build 2 tries, 
                          // one from the words as they are and    

          // one from them reversed.
     For each word in the corpus
     {
            If the word contains its preceding word
            {
                    Segment the word into 2 parts using the 
                    boundary of the shorter word;
                    SegmentUsingSuccessor(left part);
                    Print the right part to file at the end of the 

    current line;
            } Else
            {
                    SegmentUsingSuccessor(word); 
            }
     }
}
SegmentUsingSuccessor(word)
{
       For each substring S of the word
       {
             Calculate the successor count S

n
;

             If found a local peak/plateau
                    Save this position to an array of split 

    points;
       }
       If the array of split points empty  // No split point 

             // found
             //Try to segment the word                                      
                        
             //using Predecessor frequency                                
         
             SegmentUsingPredecessor(word);                     
       Else, 
            Use the array of split points to segment the 
            word and print to file;
}
SegmentUsingPredecessor(word)
{
       Reverse the word;
       For each substring S of the reverse word
       {
             Calculate the predecessor count P

n
;

             If found a local peak/plateau
                    Save this position to an array of split 

    points;
       }
       If the array of split points empty  // No split point 

            // found
             Print the whole word to file;
       Else,

           Use the array of split points to segment the word 
           and print to file;
}
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