
Unsupervised Morphemes Segmentation 

 
 

Khalid ur Rehman 
School of Computing 
University of Leeds 

Leeds, LS2 9JT 
scs5kur@leeds.ac.uk 

Iftikhar Hussain 
School of Computing 
University of Leeds 

Leeds, LS2 9JT 
scs5lh@leeds.ac.uk 

 
  

 

Abstract 

In this work, we describe the algorithm 
adopted to split the words into smallest 
possible meaningful units or morphemes. 
The algorithm is unsupervised and not 
dependent on any language. The model is 
developed using English language. How-
ever, the linguistic rules specific to Eng-
lish language are not implemented. The 
algorithm focuses on the identification of 
smallest units of words based on their 
frequency of occurrence in a given text 
corpus. The model works in two stages. 
In first stage the model learns from a 
given text corpus and makes a list of pos-
sible morphemes.  In the second stage the 
model divides the words into possible 
meaningful segments. There is no prede-
fined list of morphemes attached or hard-
coded in the model. 

1 Introduction 

Generally, words are considered as the most ba-
sic unit of any language. However, this assump-
tion is not true. In fact, words are the means to 
communicate in a language and their use vary 
with time and location. For example, there are 
words in English language that are spoken in UK 
but not in USA and vice versa. Similarly, the 
words in old English poetry are no more in use. 
Another interesting fact is that the numbers of 
words in any language are not fixed. According 
to Dr. Goodword's Separation hypothesis, “there 
are no such things as words” [1]. He claims that 
“what we take as words are in fact two distinct 
phenomena lexemes and morphemes. Lexemes 
are noun, verb, and adjective ……… Morphemes 
are everything else, including suffixes like -y, -

ness, -er, -ing, -ly and prefixes like re-, un-, 
anti”[1]. Lexemes refer to things in real world 
whereas the morphemes only refer to the gram-
matical categories. 
 
A morpheme is the smallest meaningful unit in 
the grammar of a language [1]. There are two 
basic types of morphemes: roots and affixes [2]. 
Roots make the main part of the word and repeat 
only once in a word. On the other hand, affixes 
are the subordinate parts that may or may not 
exist in a word. Affixes either precede or follow 
their root. 

2 Assumptions 

Following assumptions are made in order to re-
duce the complexity and improve the efficiency 
of algorithm.   
The special characters (like -, /, ‘ etc.) are treated 
as the word separators. 
The maximum length of a suffix is limited to 
three characters and maximum length of a root 
morpheme is limited to 13 characters. 
After separating affixes (prefix and suffix) re-
maining word will be considered as root mor-
pheme and its length must be no less than five 
characters for further division. As shown in ex-
ample below. 

 
EXAMPLE: 
Actual Word: uneducated 
Divided word:   un……educate……d 
Prefix – un 
Root morpheme – educate 
Suffix – d 

3 Model 

The learning model learns from the corpus and 
prepares a list of possible segments based on 
their frequency. After the learning is done the 



words from the corpus are picked up one by one 
and segmented into possible morphemes. 

3.1 Learning Model 

This is implemented in Microsoft Access. It 
takes the most frequent words from the given 
corpus for identification of possible morphemes.  
At first, the model extracts the list of words from 
the corpus ignoring the words having frequency 
less than seven.  The model was also tested by 
adding lower frequency words.  However, it was 
not affecting the segmentation results but was 
making the segmentation process slower. There-
fore to reduce the complexity the lower limit of 
frequency was set to seven. 

 

 
Figure 1.  Learning Model 
 
Segments (affixes, root morphemes) are 

searched from within first and last thirteen char-
acters of a word.  The maximum length of affixes 
in English is mostly shorter than four characters 
however in our model maximum limit is set to 
thirteen characters. This helps in separating af-

fixes and root morphemes having a maximum 
length of thirteen characters.  The process of 
finding possible segments in a word works on 
two sets of thirteen characters (leading 13 char-
acters and trailing 13 characters). See Fig.1.  

Before executing the algorithm, the list is 
sorted using dictionary sorting. Now to under-
stand the algorithm execution let’s take an ex-
ample of six words to be segmented. 
• ab 
• abacus 
• about 
• abreast 
• again 
• bargain 
From the above list, model will pick the first 

character from first word (i.e. ‘a’) and will check 
its frequency in the remaining words. The fre-
quency of ‘a’ is five, now if ‘a’ also exists as a 
single word then it will be qualified as a valid 
segment. However, in the list there is no com-
plete word as ‘a’ therefore it will be ignored.  In 
the next step model will pick up ‘ab’ and then 
check its frequency in the list. The frequency of 
‘ab’ is four. Now as ‘ab’ exists in the list as a 
word therefore it will be qualified as a valid 
segment and will be added to the learned list. 
This process will continue till maximum thirteen 
characters of a word (if the length of word is thir-
teen characters or more). 

In order to find segment from trailing side of 
word, similar procedure will be followed starting 
from last character. 

If a similar segment is found in both processes 
mentioned above then their frequency will be 
added and the segment will be included in the 
learned list only once. See Fig.1. 

The last step calculates the weights of differ-
ent segments. In any corpus single characters 
have maximum frequencies.  Like in our learned 
list “t, c, g, r and n” occur more than 5000 times 
however these characters may not be valid seg-
ments. Therefore, in order to ignore these charac-
ters during segmentation process their weights 
are calculated by subtracting the standard devia-
tion from their respective frequencies.  For ex-
ample, “t” occurs 5408 times and the standard 
deviation of frequencies of all single character 
segments is 3614. This makes the weight of “t” 
1794. Similarly frequency of “h” is 2908 but its 
calculated weight is -705 (2908-3614=-705). As 
the weight is negative, therefore the segmenta-
tion model will not consider “h” as a valid seg-
ment. 



3.2 Segmentation Model 

The segmentation portion of the model is de-
veloped in Visual Basic 6.0. The segmentation 
process pursues the following steps: 
• Separation of prefix from the word 
• Separation of suffix from the word 
• Segmentation of root morpheme (if the 

word length is more than five character) 
This model takes a word from corpus and 

compares it with the learned list of segments 
prepared during the execution of learning model.  

The segmentation model creates a model list 
of all words that have been segmented.  During 
the process of segmentation, this list is continu-
ously updated.   

As the segmentation model receives a word 
for segmentation it is broken into parts depend-
ing upon the existence of assumed, word separa-
tion characters (like -, / , ‘ etc).  Both the charac-
ter strings before and after separation character 
are treated as independent words. However in 
this case the word before the separation character 
is not evaluated for the suffix and the word after 
the separation character is not evaluated for pre-
fix.  

The segmentation is done in two phases. First 
phase checks each segment of characters starting 
from the first character till the last character. If 
any segment of character/s is found in the list 
and the remaining segment is also found in the 
list then the separated segment is treated as a 
possible prefix. At this stage if the segment is of 
two character length or less its weight is as-
sessed. If the weight is negative, the segment will 
be disregarded. This process continues until a 
valid prefix found.  

The remaining string (after removing prefix) is 
passed to the suffix separation module. This 
module starts from the first trailing character and 
goes till maximum segmentation of three trailing 
characters. It could result in more than one suf-
fix. The one with high weight will be considered 
as valid suffix.  

At this stage the remaining root segment is 
passed to the prefix separation module to sepa-
rate any possible root morphemes. For root mor-
pheme segmentation a remaining word must 
have at least five characters. As per the assump-
tion the words of five characters and less are 
treated as single root morpheme. This assump-
tion is made because till this stage valid prefix 
and suffix are already separated. 

If the prefix separation module fails to seg-
ment a word then the word will not be passed to 

the suffix separation module. It will be passed to 
the second phase of the model.  

The second phase separates first trailing char-
acter of the word and then passes the remaining 
segment to the prefix separation module. Now 
the prefix separation module repeats the process 
with one trailing character trimmed. The phase 
two continues to trim the trailing characters and 
keep on passing the remaining segment to the 
prefix separation module till the time the prefix 
separation module can find any valid segment. 
The purpose of this module is to pick those 
words, which cannot be separated by prefix sepa-
ration module during the first phase. The integra-
tion of second phase helps in segmenting the 
words where two valid segments do not exist in 
the learned list. For example if we take the word 
“controlled” the prefix separation module will 
start from the first character ‘c’ and the first valid 
morpheme boundary will be after ‘l’, which will 
make a valid segment “control”. However, there 
is a possibility that the learned list does not have 
the remaining segment “led”. Therefore, the pro-
gramme will not split the word “control led”.  
Similarly as the word ‘controll’ does not exist in 
the learned list therefore the other possible seg-
mentation “controll ed” will also not take place. 
Combination of two phases of model ensures that 
maximum possible morpheme boundaries are 
detected. 

 

 
Figure 2.  Segmentation Model 



4 Evaluation 

The evaluation is done by using the Perl script 
given on the Morpho Challenge website [3]. The 
script compares the segmented lists with the gold 
standard lists given for each language. The 
evaluation is based on three possibilities men-
tioned below. 

• Hit. A valid cut that means word is 
cut at the right place. 

• Insertion A wrong cut that means 
word is cut at the wrong place. 

• Deletion A missed cut that means 
a valid cut is ignored. 

• Following three parameters are calcu-
lated based on these possible cuts. 

• Precision It is the number of hits 
divided by the sum of the number of hits 
and insertions. 

• Recall It is the number of hits divided 
by the sum of the number of hits and de-
letions. 

• F-measure It is the harmonic mean 
of precision and recall. As per the gold 
standard the results having higher value 
of F-Measure are considered as better 
segmentation results. 

The model was run using English, Turkish and Fin-
nish word lists. The results achieved are as follows:- 

 
Morpheme Boundary Detections Statistics 
 

 English Turkish Finnish 
F-measure 56.68% 44.38% 43.46% 
Precision 53.36% 59.46% 67.18% 
Recall 60.46% 35.39% 32.12% 

Table 1: Morpheme Boundary Detections Statis-
tics 
 

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%

English Turkish Finnish

Segmentation Results

F-measure Precision Recall

Figure 3.  Segmentation Results 

• F-measure is maximum in English language.  
However, it is almost same in Turkish and 
Finnish. 

• Precision is least in English and it increases 
in Turkish and Finnish. 

• Recall is maximum in English and reduces 
considerably in Turkish and Finnish. 

If we plot the line graph of precision and recall 
then it shows reciprocal behaviors. 
 

Comparison of Precision and Recall 

0.00%

20.00%

40.00%

60.00%

80.00%

English Turkish Finnish

Precision Recall

 Figure 4.  Comparison of Precision and Recall 
The proposed model detects the morpheme 

boundaries based on the frequency of various 
segments in a given corpus. The results show 
that possibility of ignoring a valid cut is more 
than putting a wrong cut in Turkish and Finnish 
language; however it is opposite in English.  As 
the model always compares both segments for 
validity, therefore at some occasions a valid 
morpheme boundary may be ignored. For exam-
ple if we consider the word ‘stopped’ for seg-
mentation it may not identify any valid segments. 
Like if ‘stop’ is identified as a valid segment 
then the remaining ‘ped’ may not be a valid 
segment. Similarly while the segmentation is 
done in reverse order ‘ed’ may be recognized as 
a valid segment, however ‘stopp’ may not be 
found in the learned list. Under such circum-
stances the second phase of the model helps to 
cut the trailing character/s till valid segments are 
found in the initial set of characters. In this case 
“stopped” will be segmented as “stop p ed” (here 
weight for p is 654). This approach helped in 
avoiding wrong cuts because of which the preci-
sion is high in Turkish and Finnish corpus.  

The high recall and low precision in English 
shows that there are less ignored cuts as com-
pared to wrong cuts. The wrong cuts are because 
our model finds more segments in longer words. 
Like if we take the example of word “uncon-
strainedly”. Our learner model has calculated the 
weight for ‘s’ and ‘t’ as ‘13999’ and ‘1794’ re-



spectively. Therefore the segmentation of the 
word would be ‘un con s t rained ly’. This has 
resulted in more wrong cuts in longer words, es-
pecially in English language.  

The assumptions made at the beginning make 
the model a bit specific to English. The separa-
tion characters helped the model in identifying 
the morpheme boundaries. The limit on the 
length of word to be assessed for segmentation of 
root morpheme, which is set to five, is also based 
on English language knowledge. As the model is 
developed by learning from English language 
corpus, therefore it has resulted in better identifi-
cation of morpheme boundaries in English lan-
guage. 

The lower recall in Turkish and Finnish lan-
guage has adversely affected the value of F-
Measure in these languages. However, the value 
of F-measure for these languages is almost 
same. This shows that the effect of assumptions 
on both languages (Turkish and Finnish) is same. 

Reference 
http://www.alphadictionary.com/articles/ 

      drgw004.html, “How many words are in English?  

      – alphaDictionary”, 14-01-06 

http://www.ruf.rice.edu/~kemmer/Words/ 

      rootaffix.html, “Words in English: Roots and  

      Affixes, 14-01-06 

http://www.cis.hut.fi/morphochallenge2005/,  

      “Unsupervised segmentation of Words into  

      morphemes challenge 2005”, 14-01-06 

Microsoft Corporation-Online MSDN,  

      http://msdn.microsoft.com/vbasic/, visual Basic  

      Developer Centre, 14-01-06 

Mathias Creutz, “Unsupervised Segmentation of  

      Words Using Prior Distribution of Morph Length  

      and Frequency”, Neural Network Research  

      Centre, Helsinki University of Technology,  

      Finland. 


