A Segmentation Approach to Morpheme Analysis

Emily Pitler
Yale University
New Haven, CT 06520

Samarth Keshava
Yale University
New Haven, CT 06520

emily.pitler@aya.yale.edu samarth.keshava@aya.yale.edu

Abstract

We present a simple algorithm that is also
psychologically plausible to perform un-
supervised learning of morphemes. The
algorithm is most suited to Indo-European
languages with a concatenative morphol-
ogy, and in particular English. We will
describe the two approaches that work to-
gether to detect morphemes: 1) finding
words that appear as substrings of other
words, and 2) detecting changes in transi-
tional probabilities. This algorithm, while
most suited to the task of segmenting
words into morphemes, also suffices to an-
alyze morphemes.

1 Introduction

This paper addresses the problem of segment-
ing natural language words into morphemes, the
smallest units of language that still contain mean-
ing. While one cannot extract meanings from lists
of words and their frequencies, we can neverthe-
less still use statistical information to make useful
predictions about likely morphemes.

There is a large body of literature on mor-
pheme induction, and while it is impossible to give
a complete survey, see (Goldsmith, 2001) for a
good summary of previous approaches. Goldsmith
divides these past attempts into four categories:
identification of morpheme boundaries using tran-
sitional probabilities; identification of morpheme-
internal bigrams or trigrams; discovery of relation-
ships between pairs of words; and an information-
theoretic approach to minimize the number of let-
ters in the morphemes of the language. Our work
combines ideas from several of these approaches
and does not fit neatly into any one of the cate-
gories.

The key idea in this paper is to use words that
appear as substrings of other words and transi-
tional probabilities together to detect morpheme
boundaries. The first approach derives from the
observation that, often, the stem left over after re-
moving prefixes and suffixes is a legitimate word
itself. Due to spelling changes, this is not always
the case and therefore this method should not be
used to actually segment a word. However, given
a large enough corpus, the most common mor-
phemes can be found in this way. The other idea,
using transitional probabilities, was initially pre-
sented by (Harris, 1955). Given an utterance, Har-
ris proposed finding how many other utterances in
the corpus shared each starting fragment of that ut-
terance. He hypothesized then that peaks in these
counts correspond to morpheme boundaries.

(Hafer and Weiss, 1974) further developed the
ideas presented in Harris’s paper. Using Har-
ris’s transitional probability technique as a start-
ing point, Hafer and Weiss created 15 different
algorithms that achieved various levels of preci-
sion and recall. One issue however with their ap-
proach is their heavy reliance on empirically de-
termined parameters. For example, their best al-
gorithm (with a precision of 91.0% and a recall of
61.0%) posited a morpheme boundary if the suffix
is a word and the predecessor count is at least 5,
or if the predecessor count is at least 17 and the
successor count is at least 2.

Our goal was to design a simple algorithm given
our intuition that simpler algorithms are more
likely to approximate human processes. We con-
sciously limited both the number of language-
specific assumptions that our program makes and
“magic numbers”, parameters arbitrarily tuned to
make the program work. We did not limit the
length of morphemes, the number of morphemes

per word, nor the total number of morphemes.

2 Methodology

Our algorithm has four basic steps. We

1. build trees with probabilities based on the
corpus,

2. score word fragments using these trees to ob-
tain a large list of morphemes,

3. prune this list of morphemes, and

4. segment the test words using the morpheme
list and the lexicographic trees.

Each of these steps is described in further detail
below.

2.1 Building the Lexicographic Trees

At the beginning of the algorithm, we create two
trees of letters and their associated counts: the
“forward tree” and “backward tree”. We explain
here the construction of the “forward tree” (the
other construction is symmetric). Suppose the
alphabet of the language has b letters, and the
longest word in the corpus consists of d letters.
Then conceptually, we construct a complete b-way
tree with depth d. At each node, each of the b
branches represents one of the letters in the lan-
guage. Thus, any path from the root to some node
spells out the starting fragment of some word(s),
and the node itself contains the frequency of that
string. (Note that in practice, actually creating
such a tree would be prohibitive as well as waste-
ful since most letter combinations never occur;
thus we actually only store nodes with non-zero
counts.)

The forward and backward trees allow us to cal-
culate conditional probabilities in O(1) time given
a starting or ending substring of a word. For ex-
ample, we would use the forward tree to calculate
Pr¢(s|report) (by dividing the frequency of words
starting with “reports” by the frequency of words
starting with “report”). In the opposite direc-
tion, we would use the backward tree to calculate
Pry(e|ports) (by dividing the frequency of words
ending in “eports” by the frequency of words end-
ing in “ports”).

2.2 Scoring Potential Morphemes

Once we have finished constructing the trees as de-
scribed above, we begin finding morphemes. We

maintain two lists of morphemes: a prefix list and
a suffix list.! To populate the suffix list, for each
word, we scan from the end of the word and con-
sider every possible suffix in order of increasing
length. Suppose we are considering the suffix BS
in the word A B3. We hypothesize the proposed
suffix is correct if

1. aA is also a word in the corpus,
2. Pry(Ala) = 1, and
3. Pry(Blad) < 1.

Similarly, the criteria for determining if aA is a
prefix in the word aABg is as follows

1. B(is also a word in the corpus,
2. Pry(B|B) ~ 1, and
3. Pry(A|Bp) < 1.

The first criterion corresponds to the observa-
tion that prefixes and suffixes are often added on to
root words. For example, after removing the suffix
“ed” from “corresponded”, the resulting fragment
“correspond” is still a word. The second and third
criteria are checked using the forward and back-
ward trees. They check that the stem has multiple
children (thus implying other prefixes or suffixes
can be joined to the stem) but that the stem’s par-
ent has only one child (thus identifying it as a true
stem). Using the same example as before, the al-
gorithm would check that Pr(d|correspon) =~ 1,
and that Pr(e|correspond) < 1. If a given mor-
pheme passes all three tests, we increase its score
by 19 points; otherwise, we decrease its score by
1. After we have iterated through the entire cor-
pus, we consider all strings with positive scores
morphemes.

The rule of rewarding word fragments by 19 and
punishing by 1 may seem arbitrary, but the con-
stants were chosen so that a string has a positive
final score only if it passed our tests at least 5%
(= Tllg) of the times it appeared. Moreover,
the numbers 19 and 1 are not special; any posi-
tive numbers = and y such that myTy = .05 would

produce identical results.”> The rewarding and
"We use the terms prefix and suffix loosely, to denote any
morpheme generally found at the beginning or end of words.
For example, “man” is not technically a suffix, but it is a mor-
pheme that often appears at the end of a word.
Suppose that we rewarded and punished by 2 > 0 and
y > 0 respectively, satisfying y/(z + y) = 0.05. Then

punishing scheme is more effective than check-
ing the percentage of tests passed because given
two morphemes with the same percentage, the
more common morpheme will have a higher score.
Thus, the punishing/rewarding scheme takes into
account both the reliability and the frequency of
the string appearing as a morpheme. Single letters
such as ‘t’, which sometimes deceivingly appear to
be prefixes, are punished far more often than they
are rewarded. Strings such as ‘psycho’, which do
not appear often but are almost always true mor-
phemes when they do appear, are rewarded more
often than they are punished. Suffixes like ‘s’
are punished occasionally but rewarded very fre-
quently, and are ranked at the top of the list.

2.3 Pruning

Clearly, this method is not perfect. In particular,
one problem that often arises is that the final list
of morphemes includes strings that are the con-
catenation of two other morphemes. For exam-
ple, the list might include all of ‘er’, ‘s’, and ‘ers’.
This is undesirable since the final step of segment-
ing words may process the word “throwers” as
throw+ers instead of as throw+er+s. Fortunately,
though, this problem has a relatively simple solu-
tion (which we refer to as “pruning”). We scan
each list of morphemes, and if any morpheme is
composed of two others with better scores, then it
is thrown out.

2.4 Segmenting Words

Finally, we come to the actual segmenting of
words. Given the list of morphemes, one possi-
ble approach is to simply peel morphemes off the
ends of words as they are found. But words such
as “politeness” pose a problem: should it be seg-
mented as politenes+s or as polite+ness? Neither
the scores nor the lengths of morphemes can be re-
liably used to answer this question. In this case, ‘s’
would have a higher score, while ‘ness’ is a longer
morpheme. They key observation is that the same
probability criteria that was used earlier to detect
morphemes can be applied here to measure the ap-
propriateness of segmenting at a particular posi-
tion. In this example, we expect Pr(n|polite) to
be lower than Pr¢(s|politenes) which leads to the

y = 0.05(z +y) = 0.052 = 0.95y = = = 19y. Thus,
if a string is rewarded r times and punished p times, it would
have a score of xr —yp = 19yr —yp = y(19r —p), which is
exactly y times our score. In particular, a string has a positive
score if and only if it had a positive score in our algorithm.

Table 1: Overall evaluation results of RePortS

Language

Precision

Recall

F-Score

English

74.73 %

40.62 %

52.63 %

Table 2: Gold-standard sample results of RePortS

Measurement Total Non-affixes | Affixes
Precision 69.72 % 77.21 % 66.33 %
Recall 82.03 % 80.07 % 88.29 %
F-Score 75.38 % 78.61 % 75.75 %

correct segmentation.

Thus, our method for segmenting is as follows.
First, we scan each word from the end, and find all
morphemes B from the suffix list such that our
word can be written as o B3 (for some «). The
values for Pr(B|c) are compared for all of these
and the morpheme (if any) with the lowest value
smaller than 1 is chosen. If such a morpheme was
found, it is removed and the processed is repeated
until no more morphemes can be removed. We
then repeat the same process, attempting to peel
off morphemes in the prefix list from the begin-
ning of the word (using Pry instead of Pry).

3 Results

The algorithm described above was implemented
as a Perl program called RePortS®. The English
frequency-word list provided by the Neural Net-
works Research Centre at the Helsinki Univer-
sity of Technology containing 384,903 words was
used for training. To determine the performance
of the algorithm, we submitted our proposed seg-
mentations of the corpus to the MorphoChal-
lenge 2007 and we ran our program on a “gold
standard” of 484 words (again, provided by the
Neural Networks Research Centre) and evaluated
our proposed segmentation against the human-
determined standard (see Tables 1 and 2).

Our program identified a total of 8573 mor-
phemes (4833 in the prefix list and 3740 in the suf-
fix list). Table 3 contains the ten highest-scoring
morphemes from each list.

The program was tested on a dual 2.8 GHz pro-
cessor with 2 GB of memory. We monitored the
total running time, i.e. training and segmentation

3The earliest versions of the algorithm determined that the

most common prefix, stem and suffix are ‘re’, ‘port’ and °s’,
respectively; hence, the name RePortS.

Table 3: Top English morphemes

Morpheme | Score Morpheme | Score
non- 19670 S 56416
un 14600 ly 18680
re 10147 -based 9297
anti- 9168 ness 5826
re- 7724 -like 3990
pre- 6423 -style 3127
ex- 5536 ism 2905
self- 5147 al 2831
pro- 5057 -type 2732
over 4290 -led 2566

Table 4: Resource usage for different test data

Words Time
484 || Om S1sec
467,667 || 93m 23sec

time of RePortS. They are reported in Table 4 for
test data of different sizes.

4 Discussion

First, note that the precision is actually higher on
the larger sample than on the gold-standard subset,
while the recall is significantly lower. One possi-
ble explaination is that the large sample contained
a large number of hyphenated words. Unlike com-
pound words, where each half often appears in
other compound words, words like “we-can-do-
business-together” do not have any similar words.
There is no “we-can-do-business-alone” or any
other “we-can-do-business-"(.*) string that the al-
gorithm can use. Thus, the tree approach does sig-
nificantly worse when presented with words that
are relatively unique, and so the recall is low for
the large data set.

This algorithm was designed with the goal
of segmentation(Keshava and Pitler, 2006), not
analyzation. Thus, the plural “s” and the
third person singular verb ending “s” are treated
as identical morphemes. “Queens” is seg-
mented as “queen”+“s”, rather than analyzed
as “queen’+plural; “walks” is segmented as
“walk”+*“s”, rather than “walk”+3SG. When the
word is not strictly the concatenation of mor-
phemes, this algorithm does poorly. For example,
“boxes” is segmented as “box”+“e”+*“s”, rather
than “box”+plural. A good morpheme analyzer

would have to be able to realize that the “s” in
“queens” is actually the same as the plural end-
ing “es” in “boxes”, and that the verb ending in
“walks” is a different type of morpheme.

5 Future Work

As discussed above, the program described in this
paper only segments words based on their sur-
face spelling. If part of speech information were
used, then the program would be able to detect
spelling changes. For example, “box” is a noun,
and if it is determined that most of the other nouns
can be concatenated with a plural morpheme, and
there is an unknown morpheme “es” that does not
fit the usual noun paradigm, one could hypothe-
sis that “es” in the word “boxes” is also a plural
morpheme. Furthermore, a part-of-speech tagger
should not be required for this task. One could use
clustering of the affixes to determine categories of
words. For example, “ing” is commonly going to
be found with the verb stems, but would rarely be
found with the noun stems. By iterating the pro-
cess of determining part-of-speech of the stems
and categorizing the affixes into morphemes, a
more nuanced morpheme analyzer could be cre-
ated.

6 Conclusion

We described an efficient algorithm that uses sta-
tistical relationships within and between words to
predict morpheme boundaries. The algorithm per-
formed very well at segmenting words and per-
forms better than expected on the morpheme ana-
lyzation task. We believe that this approach, when
combined with a machine learning algorithm to
find parts-of-speech, shows promise in decompos-
ing words into their morphological units.

References

John Goldsmith. 2001. Unsupervised Learning of the
Morphology of a Natural Language. Computational
Linguistics, 27(2):153—-198.

Margaret A. Hafer and Stephen F. Weiss. 1974. Word
Segmentation by Letter Successor Varities. Infor-
mation Storage and Retrieval, 10:371-385.

Z. Harris. 1955. From Phoneme to Morpheme. Lan-
guage, 31(2):190-222.

Samarth Keshava and Emily Pitler. 2006. A simpler,
intuitive approach to morpheme induction. Proceed-
ings of the PASCAL Challenges Workshop, pages
31-35, April.

