Simple Morpheme Labelling in Unsupervised Morpheme Analysis

Delphine Bernhard

Ubiquitous Knowledge Processing Lab, Darmstadt, Germany

Morpho Challenge 2007 - September 19, 2007

- Algorithm already presented at Morpho Challenge 2005
- Only input: plain list of words
 no use of corpora or token frequency information
- Output: list of labelled morphemic segments for each word:
 - prefix: dis arm ed
 - suffix: sulk ing
 - stem: grow
 - linking element: oil painting s

Overview of the method

Input Longest words

Locate positions with low segment predictability

Variations of the average maximum transition probabilities

Input Longest words

Input

words

Longest

Locate positions with low segment predictability

Output Segments

Variations of the average maximum transition probabilities

Identification of a stem among the segments

	hyper	ventilat	ing
frequency	123	> 16 <	13 768
length	5	< 8 >	3

Prefixes and suffixes

Step 2: Acquisition of stems

Subtract prefixes and suffixes from all words

Step 3: Segmentation of words

Step 3: Segmentation of words

Alignment of words containing the same stem in order to discover similar and dissimilar parts

Validation of new prefixes and suffixes

Words	Known prefixes	Potential stems	New prefixes
	A ₁	A ₂	A ₃
fully-integrated		fully-	
well-integrated	well-		
reintegrated	re		
disintegrated			dis
integrated	ϵ		

$$\frac{|A_1|+|A_2|}{|A_1|+|A_2|+|A_3|} \geq a \text{ and } \frac{|A_1|}{|A_1|+|A_2|} \geq b$$

Step 4: Selection of the best segmentation

Step 4: Selection of the best segmentation

- The most frequent segment is chosen when given a choice
- Some frequency and morphotactic constraints are verified

Step 5 (optional): Application of the morphemic segments to a new data set

Step 5 (optional): Application of the morphemic segments to a new data set

- For each word, select segments so that the total cost is minimal
- Cost functions used:
 - Method 1:

$$cost_1(s_i) = -log \frac{f(s_i)}{\sum_i f(s_i)}$$

Method 2:

$$\textit{cost}_2(s_i) = -\textit{log} \frac{f(s_i)}{\max_i [f(s_i)]}$$

where:

- s_i = morphemic segment
- f(s_i) = frequency of segment s_i

Results for competition 1: Precision

Method 1 > Method 2

Results for competition 1: Recall

- Method 2 > Method 1
- Low recall in Turkish

Results for competition 1: F-measure

- Method 2 > Method 1
- Low F-measure in Turkish

Results for competition 2: Tfidf weighting

Results for competition 2: Okapi BM 25 weighting

 Objectives of Morpho Challenge 2007: unsupervised morpheme analysis
 more complex than segmentation of words into sub-units

 Objectives of Morpho Challenge 2007: unsupervised morpheme analysis
 more complex than segmentation of words into

sub-units

- Problems to be solved:
 - allomorphy: different forms for the same morpheme oxen = ox +PL and flies = fly_N +PL
 - homography: same form for different morphemes fly (noun = insect) vs. fly (verb)

- Objectives of Morpho Challenge 2007: unsupervised morpheme analysis
 - \Rightarrow more complex than segmentation of words into sub-units
- Problems to be solved:
 - allomorphy: different forms for the same morpheme oxen = ox +PL and flies = fly_N +PL
 - homography: same form for different morphemes fly (noun = insect) vs. fly (verb)
- What can be solved by the system in its current state?

- Objectives of Morpho Challenge 2007: unsupervised morpheme analysis
 more complex than segmentation of words into
 - \Rightarrow more complex than segmentation of words into sub-units
- Problems to be solved:
 - allomorphy: different forms for the same morpheme oxen = ox +PL and flies = fly_N +PL
 - homography: same form for different morphemes fly (noun = insect) vs. fly (verb)
- What can be solved by the system in its current state?

- Objectives of Morpho Challenge 2007: unsupervised morpheme analysis
 more complex than cogmontation of words into
 - \Rightarrow more complex than segmentation of words into sub-units
- Problems to be solved:
 - allomorphy: different forms for the same morpheme oxen = ox +PL and flies = fly_N +PL
 - homography: same form for different morphemes fly (noun = insect) vs. fly (verb)
- What can be solved by the system in its current state?

How well does the system disambiguate cross-category homography?

Examples in English

ship as a suffix vs. ship as a stem

- censor ship
- ship wreck
- IIII space ship s IIII

Analysis of the results

- + Morphotactic constraints prevent a suffix from occurring at the beginning of a word
- The most frequent segments are privileged when several morpheme categories are morphotactically plausible

- Variable morphotactic constraints
- Take paradigmatic relationships between affixes into account
- Need of corpus-derived information to:
 - 1. Improve the results obtained at several stages of the algorithm
 - 2. Be able to relax some constraints
 - 3. Achieve finer-grained morpheme labelling

Thank you!