Using Hand-Written Rewrite Rules to Induce Underlying Morphology

Michael A. Tepper

University of Washington Department of Linguistics

Unsupervised Morpheme Analysis - Morpho Challenge 2007

Outline

Introduction

Morphemes and Allomorphs Examples from Challenge Languages

Procedure Overview

Rewrite Rules Stage A :: Basic EM Stage B :: Split Segments

Results

F-Measure Results

Summary

Definitions

Tepper

We consider morphemes to be...

- basic units of grammar with no internal structure which may be composed together to form words
- realized as sequences of linguistic symbols (phones and/or letters)

Morphemes may be rendered differently in different contexts:

• lexical context: $/s/ \rightarrow en$, as in oxen

▶ phonological/orthographic context: /s/ → es, as in dresses
Morphological variants are known as allomorphs

Introduction		
0		
Examples from Challenge Languages		

Examples

Language	Туре	Morpheme	Allomorphs
English	stem	/wake/	wake, wak
	suffix	/s/	s, es
Finnish	stem	/katto/ roof	katto, kato
	suffix	/ta/ partitive	a, ä, ta, tä
Turkish	stem	/kanad/ wing	kanad, kanat
	suffix	/dik/ nominalizer	dik, dük, dık, duk
			tik, tük, tık, tuk
			diğ, düğ, dığ, duğ
			tiğ, tüğ, tığ, tuğ

Procedure Overview	

Tepper

University of Washington

	Procedure Overview	
	00	
Rewrite Rules		

Tepper

Tepper

Analysis by Rewrite Rules

- Written as cascaded (ordered) rewrite rules and compiled into regular expressions.
- Rules are meant to be run in the analysis direction on a surface segmentation
- For efficiency, we only permit two types of analyses per segment s:
 - analyses where all the rules that could have applied, did. (u'')
 - analyses where no rules applied (u' = s)
- Example Rule capturing the fact that English suffix /s/ is written as es after sibilants (s, z, sh, ...):

	Procedure Overview	
	00 • 00 00	
Stage A :: Basic EM		

Tepper

	Procedure Overview	
	000	
Stage A Basic EM		

Stage A :: Basic EM

- We estimate transition and emission probabilities of a morfessor-style HMM via maximum likelihood.
- Emission probabilities are estimated by observing cooccurrences of segments s_i in the surface layer, u_i in the analysis layer, with tags t_i to estimate the probability P(u_i|t_i) of emitting underlying morphemes:

$$P(u_i|t_i) = \sum_{s \in \text{allom.-of}(u_i)} P(u_i, s|t_i)$$
(2)

Where:

Tepper

$$u_i = \left\{ \begin{array}{ll} u_i' & \text{if } u_i = s_i \\ u_i'' & \text{otherwise} \end{array} \right.$$

	Procedure Overview	
Store A Desia EM		
Stage A :: Dasic Eivi		

Stage A :: Basic EM

Find the maximum probability segmentation of the wordlist by finding the argmax of the following equation for each word:

$$\underset{\mathbf{u},\mathbf{t}}{\operatorname{argmax}} P(\mathbf{u}|\mathbf{t}) P(\mathbf{t}) \approx \underset{\mathbf{u},\mathbf{t}}{\operatorname{argmax}} \left[\prod_{i=1}^{n} P(u_{i}|t_{i}) P(t_{i}|t_{i-1}) \right]$$
(3)

Using Hand-Written Rewrite Rules to Induce Underlying Morphology

Tepper

	Procedure Overview	
Stage B :: Split Segments		

Tepper

University of Washington

	Procedure Overview	
	000	
	00	
Stage B :: Split Segments		

Stage B :: Split Segments

- Re-tag the segmentation first, using Creutz and Lagus's 2004-2005 heuristic technique, such that only morphs exhibiting prototypical affix- or stem-distributional features are tagged as such.
- The remainder are tagged as noise; this makes them unavailable to be used in splitting.
- Key: Forcably split segments that are too frequent break under normal circumstances.

Tepper

	Results	
	•	
F-Measure Results		

F-Measure Results

Language	Method	Precision	Recall	F-Measure
English	Morf <i>CatMAP</i>	82.17%	33.08%	47.17%
	Bernhard2	61.63%	60.01%	60.81%
	Tepper2-b300	75.62%	51.72%	61.43%
				1% impr.
Finnish	Morf <i>CatMAP</i>	76.83%	27.54%	40.55%
	Bernhard2	59.65%	40.44%	48.20%
	Tepper-b600	62.01%	46.20%	52.95%
				10% impr.
Turkish	Zeman	65.81%	18.79%	29.23%
	MorfCatMAP	76.36%	24.50%	37.10%
	Tepper-b100	61.15%	<mark>49.22</mark> %	54.54%
				47% impr.

Summary

Tepper

- Our approach, which utilizes a small amount of knowledge in an otherwise unsupervised framework, is successful at learning underlying morphology.
- Learning improvements over unsupervised approaches are more dramatic for languages with more allomorphic effects, like Turkish (not surprising).
- There is hope that with a technique such as ours we can pinpoint generalizations about the most effective rules, which would be useful towards developing features for templates from which to learn rules.

Results 0

Thank you!

Acknowledgements

Funding

- UW Simpson Center for the Humanities
- UW Graduate School

Thesis Committee

- Dr. Fei Xia
- Dr. Emily Bender

Friends and Colleagues

- Tia Ghose
- Jonathan North Washington

Special Thanks

Morpho Challenge Team

- Dr. Mikko Kurimo
- Dr. Mattias Creutz
- Matti Varjokallio
- Ville Turunen