

PROMODES: A probabilistic generative model for word decomposition

Sebastian Spiegler, Bruno Golénia, Peter Flach

University of Bristol, Department of Computer Science

September 30th, 2009

Outline

Introduction

Algorithm

Overview

Probabilistic Generative Model

Parameter estimation

Experiments

Setup

Experiments: Morpho Challenge Competition 1

Conclusions

Outline

Introduction

Algorithm

Overview

Probabilistic Generative Model

Parameter estimation

Experiments

Setup

Experiments: Morpho Challenge Competition 1

Conclusions

Morphology group @ University of Bristol

- ▶ goal: **online** morphological analysis for a **text-to-speech system**
- ▶ tools: **machine learning** approaches with different degrees of **supervision** (e.g. semi-supervised)
- ▶ target languages: under-resourced **indigenous** languages (e.g. Zulu)
- ▶ training data: **small** datasets

Our objective for Morpho Challenge

- ▶ adaptation of algorithms to **large**-scale experiments
- ▶ application of pure **machine learning** approaches
- ▶ language-**independent** approach
- ▶ **no further morpheme analysis** in terms of labelling (e.g. signatures, paradigms)

Outline

Introduction

Algorithm

Overview

Probabilistic Generative Model

Parameter estimation

Experiments

Setup

Experiments: Morpho Challenge Competition 1

Conclusions

Algorithm: Overview

PROMODES = Probabilistic Generative Model for Different Degrees of Supervision

Algorithm: Overview

PROMODES = Probabilistic Generative Model for Different Degrees of Supervision

Outline:

1. Probabilistic Generative Model (PGM)
2. Parameter Estimation
3. Application of PGM → experiments

Algorithm: Probabilistic generative model

Description

- ▶ Description of **data generation** process based on observable and hidden variables
- ▶ Observable variables: **word** w
- ▶ Hidden variables: its **segmentation** b
- ▶ Goal: forming conditional distribution $Pr(b|w)$
- ▶ **Decision:** $\arg \max_{b_k} Pr(b_k|w) = \arg \max_{b_k} Pr(b_k) \cdot Pr(w|b_k)$
- ▶ **Problem:** Evaluation of **exponential** number of segmentations

Example for PGM

word w	segmentation b	segmentation given word	$Pr(b w)$
unbreakable →	$\langle 0000000000 \rangle_1$	$\langle unbreakable \rangle_1$	0.02

	$\langle 0100001000 \rangle_k$	$\langle un, break, able \rangle_k$	0.50

	$\langle 1111111111 \rangle_{2^m}$	$\langle u, n, b, r, e, a, k, a, b, l, e \rangle_{2^m}$	0.01

Algorithm: Probabilistic generative model

Linearization of PGM

- ▶ Segmentation perspective → position perspective
- ▶ Observable variables: **letter transitions** in certain position, $Pr(b_i|w_i) = Pr(x \rightarrow y)$
- ▶ Hidden variables: **boundary value** in certain position, $Pr(b_i)$, $b_i \in \{0, 1\}$, $1 \leq i \leq |w| - 1$
- ▶ Goal: **position-wise decision** whether to place a boundary or not
$$\arg \max_{b_i} Pr(b_i|w) = \begin{cases} 1, & \text{if } Pr(b_i = 1) \cdot Pr(w_i|b_i = 1) > Pr(b_i = 0) \cdot Pr(w_i|b_i = 0) \\ 0, & \text{otherwise.} \end{cases}$$
- ▶ **Advantage:** linear evaluation

Example for linear PGM

Model parameters

- ▶ X : probability distribution over **letter transitions**
- ▶ Z : probability distribution over **boundaries/non-boundaries**
- ▶ $\theta = \{X, Z\}$

1) Frequency-based → Maximum likelihood estimates (MLE)

- ▶ separate pre-processing step
- ▶ all possible substrings collected in **forward trie**
- ▶ segmentation based on peaking **successor variety** → crude method

2) Probability-based → Expectation Maximization (EM)

- ▶ Initialization of model parameters θ
- ▶ Alternating between calculating likelihood of parameter estimates (E) and maximization (M)
- ▶ Convergence criterion: **Kullback-Leibler divergence**

Parameter estimation: Expectation Maximization

Example: re-estimation of transition probability $Pr(x \rightarrow y) = p_{xy}$

$$Pr_{re-estimated}(x \rightarrow y) = \frac{\sum_{j=1}^{|W|} \sum_{i=1}^{m_j} \sum_{r=0}^1 (P(b_i = r | w_{ji}, \theta) \sum_{y' \in A} \mu_{xy, x'y'})}{\sum_{y' \in A} \sum_{j'=1}^{|W|} \sum_{i'=1}^{m_{j'}} \sum_{r'=0}^1 (P(b'_i = r' | w_{j'i'}, \theta) \sum_{y'' \in A} \mu_{x'y', x''y''})}$$

$P(b_i = r | w_{ji}, \theta)$: posterior probability of hidden variable given data

$\mu_{xy, x'y'}$: counting function with $\mu_{xy, x'y'} = \begin{cases} 1, & \text{if } x' = x \text{ and } y' = y \text{ in } w_j \text{ at } i\text{th position,} \\ 0, & \text{otherwise.} \end{cases}$

→ equivalently for probability distribution over boundaries/non-boundaries

Outline

Introduction

Algorithm

Overview

Probabilistic Generative Model

Parameter estimation

Experiments

Setup

Experiments: Morpho Challenge Competition 1

Conclusions

Experiments

Setup

PROMODES 1 (P1): frequency-based parameter estimation (pre-processing with trie-based alg.),
single word analysis

PROMODES 2 (P2): probability-based parameter estimation (Expectation Maximization),
initialization → random segmentation,
single word analysis

PROMODES COMMITTEE (PC): different initializations of EM,
committee decision (multiple analysis for each word)

Committee of unsupervised learners

- ▶ combination of different solutions into cumulative vector → majority vote

word	committee (multiple analyses)	cumulative vector	segmentation vector	segmentation
unbreakable →	$\langle 0101000101 \rangle \rightarrow$ $\langle 1000011000 \rangle \rightarrow$ $\langle 0110101110 \rangle \rightarrow$ $\langle 0100001000 \rangle \rightarrow$ $\langle 0000001001 \rangle \rightarrow$	$\langle 1311114212 \rangle$	majority vote → $\langle 0100001000 \rangle \rightarrow$	$\langle \text{un,} \text{break,} \text{able} \rangle$

Experiments: Morpho Challenge Competition 1

Results

Language	P1	P2	PC	P1	P2	PC	P1	P2	PC	av. M#	av. WL
Arabic (nv)	.8110	.7696	.7706	.2057	.3702	.3696	.3282	.5000	.4996	8.80	5.77
Arabic (vw)	.7485	.6300	.6832	.3500	.5907	.4797	.4770	.6097	.5636	8.75	9.90
English	.3620	.3224	.3224	.6481	.6110	.6110	.4646	.4221	.4221	2.25	8.70
Finnish	.3586	.3351	.4120	.5141	.6132	.4822	.4225	.4334	.4444	3.58	13.50
German	.4988	.3611	.4848	.3395	.5052	.3461	.4040	.4212	.4039	3.26	11.12
Turkish	.3222	.3536	.5530	.6642	.5870	.2835	.4339	.4414	.3748	3.63	10.80

Experiments: Analysis of results

Arabic (non-/vowelized)

- ▶ high number of morphemes per word in gold standard
- ▶ segmenting into short morphemes preferred

Other languages: English, German, Finnish, Turkish

- ▶ lower number of morphemes per word in gold standard (3-4 morphemes per word)
- ▶ PROMODES tended to over-segment
- ▶ some examples for English:

bluefield	→	blu e field
bluefields	→	blu e field s
cartographer	→	car to gra p h er
choreograph	→	chore o gra p h

PROMODES, ground truth segmentation boundary

Outline

Introduction

Algorithm

Overview

Probabilistic Generative Model

Parameter estimation

Experiments

Setup

Experiments: Morpho Challenge Competition 1

Conclusions

Conclusions

PROMODES algorithm

- ▶ unsupervised morphological analysis based on probabilistic generative model
- ▶ different parameter estimation approaches (MLE, EM), committee of unsupervised learners
- ▶ Very good results on Arabic and Finnish, good results on other languages in competition 1

Future work

- ▶ optimization of probabilistic generative model
- ▶ investigation in behaviour of committee

Morpho Challenge in general

- ▶ workshop as discussion forum for different research groups
- ▶ valuable experiences on large datasets
- ▶ opportunity of applying our algorithms to different languages

Thank you for your attention!