A Rule-Based Unsupervised Morphology Learning Framework

Constantine Lignos, Erwin Chan*,
Mitch Marcus, Charles Yang
University of Pennsylvania, *University of Arizona

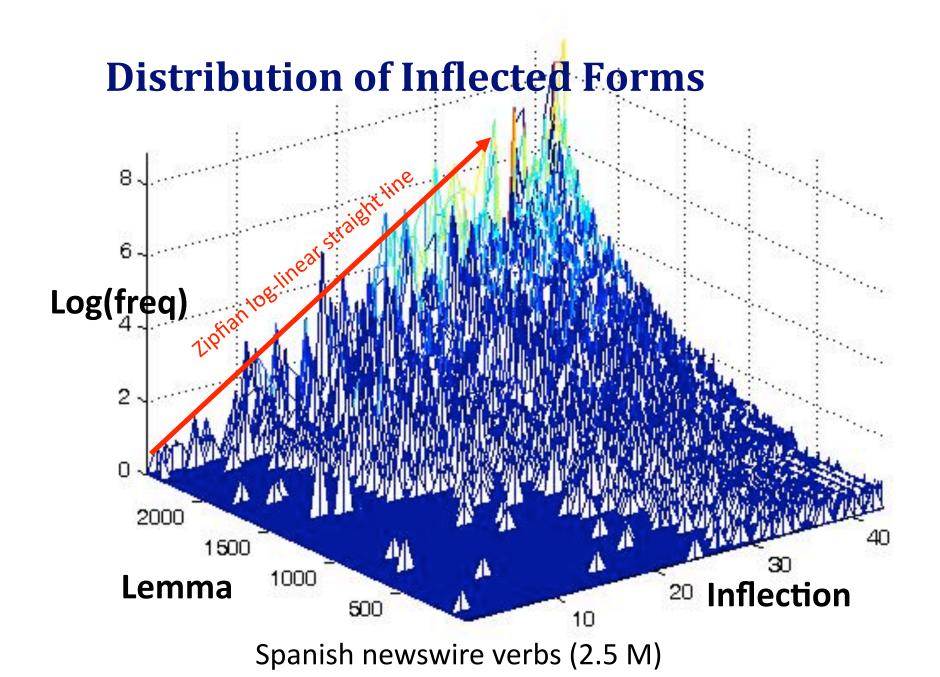
Morpho Challenge 2009 CLEF 2009, 9/30/2009

Defining the Task

- Application of a language acquisition model as a morphological analyzer
- How do we define an acquisition model?
 - Cognitively motivated- the representations it learns are linguistically motivated and cognitively useful
 - Designed for a child's input- Small amounts of sparse data received in an unsupervised fashion
- Not looking to create a fully psychologically plausible algorithm
 - While the structures learned are plausible, some parts of the algorithm are computationally expensive for the sake of simplicity

The Learning Model: Chan (2008)

- Structures and Distributions in Morphology Learning
- Provides:
 - Representation of morphology- Base and Transforms Model
 - Simple bootstrapping algorithm for learning bases and transforms in an unsupervised fashion
- Enhancements needed for Morpho Challenge:
 - Adaptation to larger/noisier corpora
 - Morphological analysis output
 - Support for multi-step derivations



Base and Transforms Model

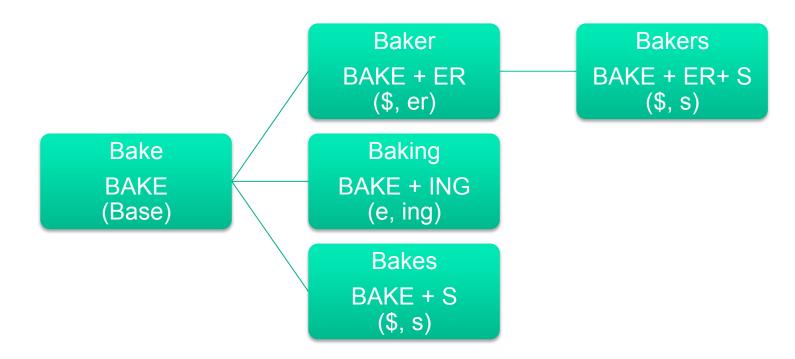
- Within each syntactic category, the most common inflected form is consistent
- Instead of relying on an abstract stem, we have a "base" form that we can easily identify- the most common inflection in each category
- To model a derived form, apply a transform to a base:

RUN +
$$(\$, s)$$
 = runs
MAKE + (e, ing) = making

Note: \$ is used to represent a null affix

Base and Transforms Model

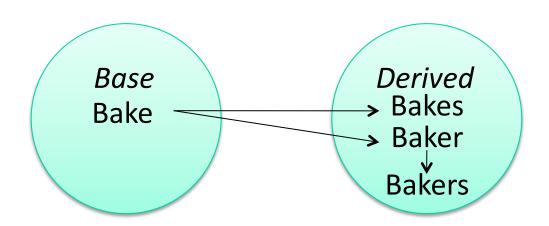
 The learner will learn a set of rules (transforms) and the word pairs they apply to (base-derived pairs)

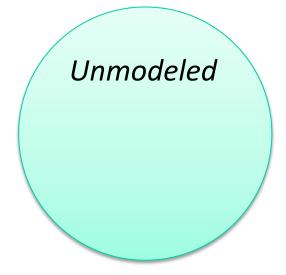


The Algorithm: Sets

A word belongs to one of three sets at any time:

- Unmodeled- All words begin in this set
- Base- Words that are used as a base in a transform and are not derived from anything else
- Derived- Words that are derived from a base word or another derived word





Core Algorithm

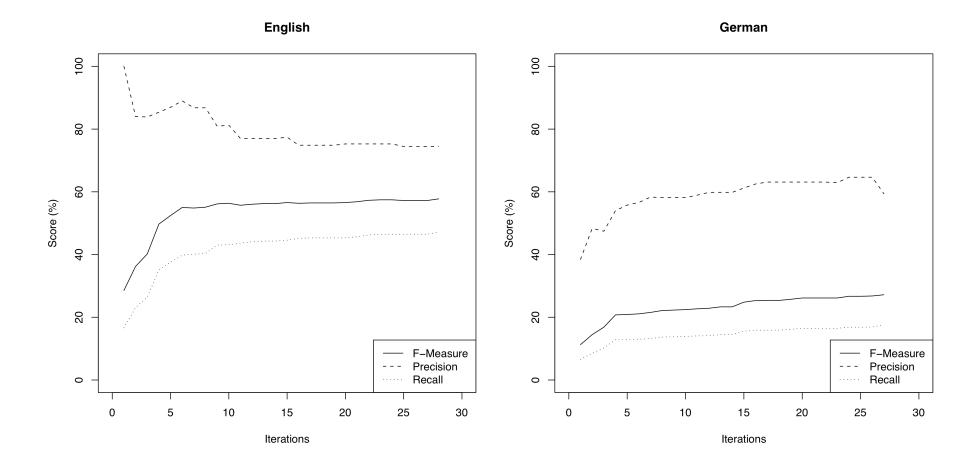
- 1. Pre-process words and populate the Unmodeled set.
- 2. Until a stopping condition is met, perform the main learning loop:
 - 1. Count affixes in words of the (Base + Unmodeled) set and the Unmodeled set.
 - 2. Hypothesize transforms from words in (Base + Unmodeled) to words in Unmodeled.
 - 3. Select the best transform.
 - 4. Reevaluate the words that the selected transform applies to, using the Base, Derived and Unmodeled sets
 - Move the words used in the transform accordingly.
- 3. Break compound words in the Base and Unmodeled sets.
- 4. Output analysis

English Transforms Learned

	Trans.	Sample Pair		Trans.	Sample Pair
1	+(\$, s)	scream/screams	15	+(\$,al)	intention/intentional
2	+(\$, ed)	splash/splashed	16	+(e, tion)	deteriorate/deterioration
3	+(\$, ing)	bond/bonding	17	+(e, ation)	normalize/normalization
4	+(\$, 's)	office/office's	18	+(e, y)	subtle/subtly
5	+(\$, ly)	unlawful/unlawfully	19	+(\$, st)	safe/safest
6	+(e, ing)	supervise/supervising	20	(\$, pre)+	school/preschool
7	+(y, ies)	fishery/fisheries	21	+(\$, ment)	establish/establishment
8	+(\$, es)	skirmish/skirmishes	22	(\$, inter)+	group/intergroup
9	+(\$, er)	truck/trucker	23	+(t, ce)	evident/evidence
10	(\$, un)+	popular/unpopular	24	(\$,se)+	cede/secede
11	+(\$, y)	risk/risky	25	+(\$, a)	helen/helena
12	(\$, dis)+	credit/discredit	26	+(n, st)	lighten/lightest
13	(\$, in)+	appropriate/inappropriate	27	(\$, be)+	came/became
14	+(\$, ation)	transform/transformation			

Penry University of Pennsylva

Performance



Error Types and Proposed Solutions

- Almost all transforms learned are real morphological rules, although they sometimes have spurious pairs
 - In English, +(\$, a) and (\$,se)+ are the only spurious transforms out of 27 learned
 - Example spurious pairs for good transforms:
 - gust/disgust
 - pen/penal
 - —tent/intent
 - gin/begin
 - Part of the cause is there is no concept of syntactic categories
 - Thus no concept of inflectional/derivational rules
 - Basic approach to category induction in Chan 2008, but needs refinement to identify category of derived forms

Error Types and Proposed Solutions

Difficulty learning multistep derivations

- Does not predict existence of unseen forms
 - Ex: acidified = ACID + (\$, ify) + (y, ied)
 - If acidify is not seen in the corpus we won't learn the connection between acid and acidified
- The learner needs to understand the productivity of rules in order to decide whether it's likely an unseen form exists

Rule representation too simple for other languages

- All rules consist of affix changes only
- Should support wider morphological functions, such as templatic morphology and vowel harmony

Conclusions

- An acquisition model can provide an effective learning framework for a morphological analyzer
- Chan (2008) model and algorithm deliver competitive results in English and German with some adaptation
- To cover more languages, the representations used by the learner needs to be expanded