

Unsupervised Morpheme Analysis Competition 3: Statistical Machine Translation

Mikko Kurimo, <u>Sami Virpioja</u>, Ville T. Turunen (TKK) Graeme W. Blackwood, William Byrne (UCAM)

Morphology and SMT

- Statistical machine translation systems find translation probabilities between words or sequences of words ("phrases").
- Languages of rich morphology tend to be hard to translate both from and to – e.g. Finnish is one of the hardest among the EU languages.
- Still unsolved problem

Morph-based translation

- Can unsupervised morphology learning directly improve SMT?
 - Reduces out-of-vocabulary rates

(S. Virpioja, J. Väyrynen, M. Creutz & M. Sadeniemi, Morphologyaware statistical machine translation based on morphs induced in an unsupervised manner, MT Summit XI, 2007)

Improves translation results

(A. de Gispert, S. Virpioja, W. Byrne, M. Kurimo, Minimum bayes risk combination of translation hypotheses from alternative morphological decompositions, HLT-NAACL, 2009)

Tasks and data

- Europarl parallel corpus
 - Proceedings of the EU parliament meetings in 11 European languages
- { Finnish, German } \rightarrow English
 - Reducing OOV problems at the **source side**
 - Finnish: 479 780 word types
 - German: 270 038 word types
- ~1 million sentences for training,
 <3000 for tuning, 3000 for testing

System overview

• Evaluation based on combination of word-based and morph-based SMT systems (de Gispert et al., 2009)

Phrase-based SMT

- One of the major advances in SMT methodology in this decade
- Open source software: **Moses** (P. Koehn et al., 2007)
- Main steps in building a system with Moses:
 - Word alignment (Giza++)
 - Phrase extraction and scoring
 - Building additional models (language model, reordering model, etc.)
 - Parameter tuning for decoder

MBR and system combination

- Minimum Bayes Risk (MBR) decoding:
 - Select translation hypothesis which maximises the conditional expected gain:

$$\hat{E} = \underset{\hat{E} \in e}{\operatorname{argmax}} \sum_{E \in e} G(E, \hat{E}) P(E|F)$$

• **System combination:** generate N-best lists from different systems and find the best hypothesis with the MBR criterion

MT evaluation

- There are several metrics for automatic evaluation of MT systems.
- **BLEU score** is based on co-occurrence of n-grams (n=1...4) in the proposed translation and the reference translation(s).
- Usually consistent with human evaluations if the evaluated systems are similar

Submissions to Competition 3

- Bernhard MorphoNet (MN)
- Monson et al. ParaMor Mimic (PM)
- Monson et al. ParaMor Morfessor Mimic (PMM)
- Monson et al. ParaMor Morfessor Union (PMU)
- Virpioja & Kohonen Allomorfessor (A)
- Tchoukalov et al. MetaMorph (MM)
- Reference methods: Morfessor Baseline (MB), Morfessor CatMAP (MC), Grammatical (G)

Example translations (1)

Words

Grammatical gold standard

Example translations (2)

Bernhard - MorphoNet

Monson et al. - ParaMor-Morfessor Union

Example translations (3)

Virpioja & Kohonen - Allomorfessor

Tchoukalov et al. - MetaMorph

Results: Finnish

Results: German

Discussion

- Too long (>100 tokens) sentences cannot be handled by Giza++.
 - Segmentation decreases the amount of training data.
 - Direct effect on performance
- However, the number of average morphs per word does **not** explain the number of pruned sentences.

Conclusions

- 6 submitted and 3 reference methods were tested on two machine translation tasks.
- The 3-5 best methods improved the translation results over the baseline word-based system.
- Some improvements are needed to make the comparison more fair.
- Full report and papers in the CLEF proceedings
- Details, presentations, links, info at: <u>http://www.cis.hut.fi/morphochallenge2009/</u>

MBR: A toy example

P(E1 | F) = 0.4

P(E2 | F) = 0.4

P(E3 | F) = 0.2

- F = "Kahvi oli vahvaa."
- E1 = "The coffee was powerful."
- E2 = "The coffee tasted strong."
- E3 = "The coffee was strong."
- G(x,y) = the number of common words
- E1: 4 * 0.4 + 2 * 0.4 + 3 * 0.2 = 3.0
- E2: 2 * 0.4 + 4 * 0.4 + 3 * 0.2 = 3.0
- E3: 3 * 0.4 + 3 * 0.4 + 4 * 0.2 = **3.2**